Voronoi regionalizer
In [1]:
Copied!
import geopandas as gpd
import numpy as np
import plotly.express as px
from shapely.geometry import Point
from srai.regionalizers import VoronoiRegionalizer
from srai.constants import WGS84_CRS
from srai.plotting.folium_wrapper import plot_regions
from srai.utils import geocode_to_region_gdf
import geopandas as gpd
import numpy as np
import plotly.express as px
from shapely.geometry import Point
from srai.regionalizers import VoronoiRegionalizer
from srai.constants import WGS84_CRS
from srai.plotting.folium_wrapper import plot_regions
from srai.utils import geocode_to_region_gdf
Regionalizer whole Earth¶
Basic usage of VoronoiRegionalizer
to cover whole Earth using 6 poles.
In [2]:
Copied!
# 6 poles of the Earth
seeds_gdf = gpd.GeoDataFrame(
{
"geometry": [
Point(0, 0),
Point(90, 0),
Point(180, 0),
Point(-90, 0),
Point(0, 90),
Point(0, -90),
]
},
index=[1, 2, 3, 4, 5, 6],
crs=WGS84_CRS,
)
# 6 poles of the Earth
seeds_gdf = gpd.GeoDataFrame(
{
"geometry": [
Point(0, 0),
Point(90, 0),
Point(180, 0),
Point(-90, 0),
Point(0, 90),
Point(0, -90),
]
},
index=[1, 2, 3, 4, 5, 6],
crs=WGS84_CRS,
)
In [3]:
Copied!
seeds_gdf.plot()
seeds_gdf.plot()
Out[3]:
<Axes: >
In [4]:
Copied!
vr = VoronoiRegionalizer(seeds=seeds_gdf)
vr = VoronoiRegionalizer(seeds=seeds_gdf)
In [5]:
Copied!
result_gdf = vr.transform()
result_gdf = vr.transform()
Generating regions: 0%| | 0/6 [00:00<?, ?it/s]/opt/hostedtoolcache/Python/3.10.12/x64/lib/python3.10/site-packages/spherical_geometry/great_circle_arc.py:365: RuntimeWarning: invalid value encountered in divide return P / l /opt/hostedtoolcache/Python/3.10.12/x64/lib/python3.10/site-packages/spherical_geometry/great_circle_arc.py:261: RuntimeWarning: invalid value encountered in intersects return math_util.intersects(A, B, C, D) Generating regions: 50%|█████ | 3/6 [00:02<00:02, 1.38it/s]/opt/hostedtoolcache/Python/3.10.12/x64/lib/python3.10/site-packages/spherical_geometry/great_circle_arc.py:261: RuntimeWarning: invalid value encountered in intersects return math_util.intersects(A, B, C, D) Generating regions: 67%|██████▋ | 4/6 [00:02<00:01, 1.59it/s]/opt/hostedtoolcache/Python/3.10.12/x64/lib/python3.10/site-packages/spherical_geometry/great_circle_arc.py:261: RuntimeWarning: invalid value encountered in intersects return math_util.intersects(A, B, C, D) Generating regions: 83%|████████▎ | 5/6 [00:03<00:00, 1.73it/s]/opt/hostedtoolcache/Python/3.10.12/x64/lib/python3.10/site-packages/spherical_geometry/great_circle_arc.py:261: RuntimeWarning: invalid value encountered in intersects return math_util.intersects(A, B, C, D) Generating regions: 100%|██████████| 6/6 [00:03<00:00, 1.58it/s]
In [6]:
Copied!
result_gdf
result_gdf
Out[6]:
geometry | |
---|---|
region_id | |
6 | POLYGON ((135.19105 -35.35420, 135.28673 -35.3... |
4 | POLYGON ((-45.19105 -35.35420, -45.28673 -35.3... |
1 | POLYGON ((0.25444 44.99972, 0.38167 44.99936, ... |
3 | MULTIPOLYGON (((135.00000 0.17992, 135.00000 0... |
2 | POLYGON ((45.19105 35.35420, 45.28673 35.39899... |
5 | POLYGON ((180.00000 89.82000, 180.00000 89.730... |
Globe view¶
In [7]:
Copied!
fig = px.choropleth(
result_gdf,
geojson=result_gdf.geometry,
locations=result_gdf.index,
color=result_gdf.index,
color_continuous_scale=px.colors.sequential.Viridis,
)
fig2 = px.scatter_geo(seeds_gdf, lat=seeds_gdf.geometry.y, lon=seeds_gdf.geometry.x)
fig.update_traces(marker={"opacity": 0.6}, selector=dict(type="choropleth"))
fig.add_trace(fig2.data[0])
fig.update_traces(marker_color="white", marker_size=10, selector=dict(type="scattergeo"))
fig.update_layout(coloraxis_showscale=False)
fig.update_geos(
projection_type="orthographic",
projection_rotation_lon=20,
projection_rotation_lat=30,
showlakes=False,
)
fig.update_layout(height=800, width=800, margin={"r": 0, "t": 0, "l": 0, "b": 0})
fig.show(renderer="png") # replace with fig.show() to allow interactivity
fig = px.choropleth(
result_gdf,
geojson=result_gdf.geometry,
locations=result_gdf.index,
color=result_gdf.index,
color_continuous_scale=px.colors.sequential.Viridis,
)
fig2 = px.scatter_geo(seeds_gdf, lat=seeds_gdf.geometry.y, lon=seeds_gdf.geometry.x)
fig.update_traces(marker={"opacity": 0.6}, selector=dict(type="choropleth"))
fig.add_trace(fig2.data[0])
fig.update_traces(marker_color="white", marker_size=10, selector=dict(type="scattergeo"))
fig.update_layout(coloraxis_showscale=False)
fig.update_geos(
projection_type="orthographic",
projection_rotation_lon=20,
projection_rotation_lat=30,
showlakes=False,
)
fig.update_layout(height=800, width=800, margin={"r": 0, "t": 0, "l": 0, "b": 0})
fig.show(renderer="png") # replace with fig.show() to allow interactivity
2D OSM View¶
In [8]:
Copied!
folium_map = plot_regions(result_gdf)
seeds_gdf.explore(
m=folium_map,
style_kwds=dict(color="#444", opacity=1, fillColor="#f2f2f2", fillOpacity=1),
marker_kwds=dict(radius=3),
)
folium_map = plot_regions(result_gdf)
seeds_gdf.explore(
m=folium_map,
style_kwds=dict(color="#444", opacity=1, fillColor="#f2f2f2", fillOpacity=1),
marker_kwds=dict(radius=3),
)
Out[8]:
Make this Notebook Trusted to load map: File -> Trust Notebook
Regionalize single country¶
Drawing a list of arbitrary points inside of the country boundary and using them for regionalization of the same geometry.
In [9]:
Copied!
uk_gdf = geocode_to_region_gdf(query=["R62149"], by_osmid=True)
uk_shape = uk_gdf.iloc[0].geometry # get the Polygon
uk_gdf = geocode_to_region_gdf(query=["R62149"], by_osmid=True)
uk_shape = uk_gdf.iloc[0].geometry # get the Polygon
In [10]:
Copied!
uk_gdf
uk_gdf
Out[10]:
geometry | |
---|---|
region_id | |
United Kingdom | MULTIPOLYGON (((-14.01552 57.60263, -14.01459 ... |
In [11]:
Copied!
def generate_random_points(shape, n_points=100):
minx, miny, maxx, maxy = shape.bounds
pts = []
while len(pts) < 4:
randx = np.random.uniform(minx, maxx, n_points)
randy = np.random.uniform(miny, maxy, n_points)
coords = np.vstack((randx, randy)).T
# use only the points inside the geographic area
pts = [p for p in list(map(Point, coords)) if p.within(shape)]
del coords # not used any more
return pts
def generate_random_points(shape, n_points=100):
minx, miny, maxx, maxy = shape.bounds
pts = []
while len(pts) < 4:
randx = np.random.uniform(minx, maxx, n_points)
randy = np.random.uniform(miny, maxy, n_points)
coords = np.vstack((randx, randy)).T
# use only the points inside the geographic area
pts = [p for p in list(map(Point, coords)) if p.within(shape)]
del coords # not used any more
return pts
In [12]:
Copied!
pts = generate_random_points(uk_shape)
uk_seeds_gdf = gpd.GeoDataFrame(
{"geometry": pts},
index=list(range(len(pts))),
crs=WGS84_CRS,
)
pts = generate_random_points(uk_shape)
uk_seeds_gdf = gpd.GeoDataFrame(
{"geometry": pts},
index=list(range(len(pts))),
crs=WGS84_CRS,
)
Random points on a map¶
In [13]:
Copied!
folium_map = plot_regions(uk_gdf, tiles_style="CartoDB positron")
uk_seeds_gdf.explore(
m=folium_map,
style_kwds=dict(color="#444", opacity=1, fillColor="#f2f2f2", fillOpacity=1),
marker_kwds=dict(radius=3),
)
folium_map = plot_regions(uk_gdf, tiles_style="CartoDB positron")
uk_seeds_gdf.explore(
m=folium_map,
style_kwds=dict(color="#444", opacity=1, fillColor="#f2f2f2", fillOpacity=1),
marker_kwds=dict(radius=3),
)
Out[13]:
Make this Notebook Trusted to load map: File -> Trust Notebook
In [14]:
Copied!
vr_uk = VoronoiRegionalizer(seeds=uk_seeds_gdf)
vr_uk = VoronoiRegionalizer(seeds=uk_seeds_gdf)
In [15]:
Copied!
uk_result_gdf = vr_uk.transform(gdf=uk_gdf)
uk_result_gdf = vr_uk.transform(gdf=uk_gdf)
Generating regions: 100%|██████████| 34/34 [00:06<00:00, 5.44it/s]
In [16]:
Copied!
uk_result_gdf.head()
uk_result_gdf.head()
Out[16]:
geometry | |
---|---|
region_id | |
28 | POLYGON ((-6.53427 49.72894, -6.40939 49.76881... |
18 | POLYGON ((1.62505 52.34082, 1.77094 52.35344, ... |
7 | POLYGON ((0.31510 52.61285, 0.33914 52.70554, ... |
11 | MULTIPOLYGON (((-3.29934 59.40946, -3.28784 59... |
1 | MULTIPOLYGON (((-1.53635 57.56700, -1.70691 57... |
Generated regions on a map¶
In [17]:
Copied!
folium_map = plot_regions(uk_result_gdf, tiles_style="CartoDB positron")
uk_seeds_gdf.explore(
m=folium_map,
style_kwds=dict(color="#444", opacity=1, fillColor="#f2f2f2", fillOpacity=1),
marker_kwds=dict(radius=3),
)
folium_map = plot_regions(uk_result_gdf, tiles_style="CartoDB positron")
uk_seeds_gdf.explore(
m=folium_map,
style_kwds=dict(color="#444", opacity=1, fillColor="#f2f2f2", fillOpacity=1),
marker_kwds=dict(radius=3),
)
Out[17]:
Make this Notebook Trusted to load map: File -> Trust Notebook
Higher amount of points¶
Example of railway stations in Germany (5000+ seeds) with multiprocessing.
In [18]:
Copied!
stations_csv = gpd.pd.read_csv(
"https://raw.githubusercontent.com/trainline-eu/stations/master/stations.csv",
sep=";",
index_col="id",
usecols=["id", "latitude", "longitude", "country"],
)
stations_csv
stations_csv = gpd.pd.read_csv(
"https://raw.githubusercontent.com/trainline-eu/stations/master/stations.csv",
sep=";",
index_col="id",
usecols=["id", "latitude", "longitude", "country"],
)
stations_csv
Out[18]:
latitude | longitude | country | |
---|---|---|---|
id | |||
1 | 44.081790 | 6.001625 | FR |
2 | 44.061565 | 5.997373 | FR |
3 | 44.063863 | 6.011248 | FR |
4 | 44.350000 | 6.350000 | FR |
6 | 44.088710 | 6.222982 | FR |
... | ... | ... | ... |
68177 | 44.674312 | 10.478726 | IT |
68178 | 44.661871 | 10.466608 | IT |
68179 | 44.694544 | 10.498249 | IT |
68180 | 43.125000 | 5.972400 | FR |
68181 | 40.726753 | 13.874011 | IT |
64039 rows × 3 columns
In [19]:
Copied!
stations = []
positions = set()
for idx, r in stations_csv.iterrows():
if r.country != "DE" or gpd.pd.isna(r.latitude) or gpd.pd.isna(r.longitude):
continue
pos = round(r.longitude, 5), round(r.latitude, 5)
if not pos in positions:
stations.append({"id": idx, "geometry": Point(*pos)})
positions.add(pos)
stations_gdf = gpd.GeoDataFrame(data=stations, crs=WGS84_CRS).set_index("id")
del stations_csv
del stations
del positions
stations_gdf.head()
stations = []
positions = set()
for idx, r in stations_csv.iterrows():
if r.country != "DE" or gpd.pd.isna(r.latitude) or gpd.pd.isna(r.longitude):
continue
pos = round(r.longitude, 5), round(r.latitude, 5)
if not pos in positions:
stations.append({"id": idx, "geometry": Point(*pos)})
positions.add(pos)
stations_gdf = gpd.GeoDataFrame(data=stations, crs=WGS84_CRS).set_index("id")
del stations_csv
del stations
del positions
stations_gdf.head()
Out[19]:
geometry | |
---|---|
id | |
6691 | POINT (9.03081 51.73032) |
6692 | POINT (11.80785 49.09284) |
6693 | POINT (10.48471 53.14212) |
6695 | POINT (6.59351 50.44187) |
6696 | POINT (8.31165 49.93009) |
In [20]:
Copied!
vr_rail = VoronoiRegionalizer(seeds=stations_gdf)
vr_rail = VoronoiRegionalizer(seeds=stations_gdf)
In [21]:
Copied!
rail_result_gdf = vr_rail.transform()
rail_result_gdf = vr_rail.transform()
Germany view¶
In [22]:
Copied!
folium_map = plot_regions(rail_result_gdf, tiles_style="CartoDB positron")
stations_gdf.explore(
m=folium_map,
style_kwds=dict(color="#444", opacity=1, fillColor="#f2f2f2", fillOpacity=1),
marker_kwds=dict(radius=1),
)
folium_map.fit_bounds([(54.98310, 5.98865), (47.30248, 15.01699)])
folium_map
folium_map = plot_regions(rail_result_gdf, tiles_style="CartoDB positron")
stations_gdf.explore(
m=folium_map,
style_kwds=dict(color="#444", opacity=1, fillColor="#f2f2f2", fillOpacity=1),
marker_kwds=dict(radius=1),
)
folium_map.fit_bounds([(54.98310, 5.98865), (47.30248, 15.01699)])
folium_map
Out[22]:
Make this Notebook Trusted to load map: File -> Trust Notebook
Berlin view¶
In [23]:
Copied!
# Berlin
folium_map.fit_bounds([(52.51637 + 0.1, 13.40665 + 0.1), (52.51637 - 0.1, 13.40665 - 0.1)])
folium_map
# Berlin
folium_map.fit_bounds([(52.51637 + 0.1, 13.40665 + 0.1), (52.51637 - 0.1, 13.40665 - 0.1)])
folium_map
Out[23]:
Make this Notebook Trusted to load map: File -> Trust Notebook
Difference between spherical voronoi and 2d voronoi¶
Showing the difference between working on the sphere and projected 2D plane.
Uses shapely.voronoi_polygons
function as an example.
shapely.voronoi_diagram
function allows for a quick division of the Earth using list of seeds on a projected 2d plane.
This results in straight lines with angles distorted and polygons differences
might be substantial during comparisons or any area calculations.
In [24]:
Copied!
from shapely.ops import voronoi_diagram
from plotly.subplots import make_subplots
from shapely.ops import voronoi_diagram
from plotly.subplots import make_subplots
In [25]:
Copied!
pl_gdf = geocode_to_region_gdf(query=["R49715"], by_osmid=True)
pl_gdf_shape = pl_gdf.iloc[0].geometry # get the Polygon
pl_gdf = geocode_to_region_gdf(query=["R49715"], by_osmid=True)
pl_gdf_shape = pl_gdf.iloc[0].geometry # get the Polygon
In [26]:
Copied!
pts = generate_random_points(pl_gdf_shape)
pl_seeds_gdf = gpd.GeoDataFrame(
{"geometry": pts},
index=list(range(len(pts))),
crs=WGS84_CRS,
)
pts = generate_random_points(pl_gdf_shape)
pl_seeds_gdf = gpd.GeoDataFrame(
{"geometry": pts},
index=list(range(len(pts))),
crs=WGS84_CRS,
)
In [27]:
Copied!
region_polygons = list(
voronoi_diagram(pl_seeds_gdf.geometry.unary_union, envelope=pl_gdf_shape).normalize().geoms
)
region_polygons = list(
voronoi_diagram(pl_seeds_gdf.geometry.unary_union, envelope=pl_gdf_shape).normalize().geoms
)
In [28]:
Copied!
pl_regions_2d_gdf = gpd.GeoDataFrame(
{"geometry": [polygon for polygon in region_polygons]},
index=list(range(len(region_polygons))),
crs=WGS84_CRS,
).clip(pl_gdf_shape)
pl_regions_2d_gdf = gpd.GeoDataFrame(
{"geometry": [polygon for polygon in region_polygons]},
index=list(range(len(region_polygons))),
crs=WGS84_CRS,
).clip(pl_gdf_shape)
In [29]:
Copied!
pl_regions_2d_gdf
pl_regions_2d_gdf
Out[29]:
geometry | |
---|---|
23 | POLYGON ((19.58295 49.71063, 19.82752 49.99465... |
5 | POLYGON ((22.03071 50.17879, 23.45705 51.33318... |
19 | POLYGON ((20.88561 50.27163, 21.10690 50.71567... |
21 | POLYGON ((19.77365 50.71436, 19.80760 50.74745... |
47 | POLYGON ((20.13700 51.19459, 20.91696 50.94306... |
... | ... |
3 | POLYGON ((17.03751 54.67573, 16.77948 54.47242... |
56 | POLYGON ((17.12476 54.91886, 17.12565 54.91906... |
52 | POLYGON ((18.25607 55.03479, 18.27736 55.03561... |
54 | POLYGON ((18.25230 54.13957, 17.80361 54.00549... |
11 | POLYGON ((19.03971 54.02020, 19.03385 54.01985... |
70 rows × 1 columns
In [30]:
Copied!
vr_pl = VoronoiRegionalizer(seeds=pl_seeds_gdf)
vr_pl = VoronoiRegionalizer(seeds=pl_seeds_gdf)
In [31]:
Copied!
pl_result_gdf = vr_pl.transform(gdf=pl_gdf)
pl_result_gdf = vr_pl.transform(gdf=pl_gdf)
Generating regions: 100%|██████████| 70/70 [00:08<00:00, 8.36it/s]
In [32]:
Copied!
pl_result_gdf
pl_result_gdf
Out[32]:
geometry | |
---|---|
region_id | |
30 | POLYGON ((20.16292 49.84101, 20.30190 49.81972... |
41 | MULTIPOLYGON (((18.78655 49.71630, 18.90205 49... |
37 | POLYGON ((21.93921 49.35217, 21.94965 49.44653... |
61 | POLYGON ((14.80331 51.73169, 14.95400 51.72188... |
4 | POLYGON ((14.36944 53.65261, 14.51893 53.63680... |
... | ... |
32 | POLYGON ((17.42129 54.52855, 17.49741 54.44699... |
29 | POLYGON ((19.14425 54.01089, 18.97912 53.93991... |
22 | POLYGON ((17.72397 54.20204, 17.64875 54.28374... |
65 | POLYGON ((20.43823 53.98743, 20.27657 53.99113... |
13 | POLYGON ((19.50587 54.48265, 19.37990 54.42330... |
70 rows × 1 columns
In [33]:
Copied!
choropleth_1 = px.choropleth(
pl_result_gdf,
geojson=pl_result_gdf.geometry,
locations=pl_result_gdf.index,
color=pl_result_gdf.index,
color_continuous_scale=px.colors.qualitative.Plotly,
)
choropleth_2 = px.choropleth(
pl_regions_2d_gdf,
geojson=pl_regions_2d_gdf.geometry,
locations=pl_regions_2d_gdf.index,
color=pl_regions_2d_gdf.index,
color_continuous_scale=px.colors.qualitative.Plotly,
)
points_plot = px.scatter_geo(pl_seeds_gdf, lat=pl_seeds_gdf.geometry.y, lon=pl_seeds_gdf.geometry.x)
fig = make_subplots(
rows=2,
cols=2,
specs=[
[{"type": "scattergeo"}, {"type": "scattergeo"}],
[{"type": "scattergeo"}, {"type": "scattergeo"}],
],
horizontal_spacing=0.01,
vertical_spacing=0.0,
)
fig.add_trace(choropleth_1["data"][0], row=1, col=1)
fig.add_trace(choropleth_1["data"][0], row=2, col=1)
fig.add_trace(choropleth_2["data"][0], row=1, col=2)
fig.add_trace(choropleth_2["data"][0], row=2, col=2)
for r in [1, 2]:
for c in [1, 2]:
fig.add_trace(points_plot.data[0], row=r, col=c)
minx, miny, maxx, maxy = pl_gdf_shape.bounds
fig.update_traces(marker_color="black", marker_size=6, selector=dict(type="scattergeo"))
fig.update_layout(coloraxis_showscale=False)
fig.update_geos(
projection_type="natural earth",
lataxis_range=[miny - 1, maxy + 1],
lonaxis_range=[minx - 1, maxx + 1],
resolution=50,
row=1,
showlakes=False,
)
fig.update_geos(
projection_type="natural earth",
lataxis_range=[miny + 1, maxy - 1],
lonaxis_range=[minx + 2, maxx - 2],
resolution=50,
row=2,
showlakes=False,
)
fig.update_traces(marker={"opacity": 0.6}, selector=dict(type="choropleth"), row=1)
fig.update_traces(marker={"opacity": 0.25}, selector=dict(type="choropleth"), row=2)
fig.update_layout(
height=800,
width=800,
title_text="Side By Side Subplots (Left: Spherical voronoi, Right: 2D voronoi)",
margin={"r": 5, "t": 50, "l": 5, "b": 0},
)
fig.show(renderer="png") # replace with fig.show() to allow interactivity
choropleth_1 = px.choropleth(
pl_result_gdf,
geojson=pl_result_gdf.geometry,
locations=pl_result_gdf.index,
color=pl_result_gdf.index,
color_continuous_scale=px.colors.qualitative.Plotly,
)
choropleth_2 = px.choropleth(
pl_regions_2d_gdf,
geojson=pl_regions_2d_gdf.geometry,
locations=pl_regions_2d_gdf.index,
color=pl_regions_2d_gdf.index,
color_continuous_scale=px.colors.qualitative.Plotly,
)
points_plot = px.scatter_geo(pl_seeds_gdf, lat=pl_seeds_gdf.geometry.y, lon=pl_seeds_gdf.geometry.x)
fig = make_subplots(
rows=2,
cols=2,
specs=[
[{"type": "scattergeo"}, {"type": "scattergeo"}],
[{"type": "scattergeo"}, {"type": "scattergeo"}],
],
horizontal_spacing=0.01,
vertical_spacing=0.0,
)
fig.add_trace(choropleth_1["data"][0], row=1, col=1)
fig.add_trace(choropleth_1["data"][0], row=2, col=1)
fig.add_trace(choropleth_2["data"][0], row=1, col=2)
fig.add_trace(choropleth_2["data"][0], row=2, col=2)
for r in [1, 2]:
for c in [1, 2]:
fig.add_trace(points_plot.data[0], row=r, col=c)
minx, miny, maxx, maxy = pl_gdf_shape.bounds
fig.update_traces(marker_color="black", marker_size=6, selector=dict(type="scattergeo"))
fig.update_layout(coloraxis_showscale=False)
fig.update_geos(
projection_type="natural earth",
lataxis_range=[miny - 1, maxy + 1],
lonaxis_range=[minx - 1, maxx + 1],
resolution=50,
row=1,
showlakes=False,
)
fig.update_geos(
projection_type="natural earth",
lataxis_range=[miny + 1, maxy - 1],
lonaxis_range=[minx + 2, maxx - 2],
resolution=50,
row=2,
showlakes=False,
)
fig.update_traces(marker={"opacity": 0.6}, selector=dict(type="choropleth"), row=1)
fig.update_traces(marker={"opacity": 0.25}, selector=dict(type="choropleth"), row=2)
fig.update_layout(
height=800,
width=800,
title_text="Side By Side Subplots (Left: Spherical voronoi, Right: 2D voronoi)",
margin={"r": 5, "t": 50, "l": 5, "b": 0},
)
fig.show(renderer="png") # replace with fig.show() to allow interactivity