Hex2vec embedder
In [1]:
Copied!
from srai.embedders import Hex2VecEmbedder
from srai.joiners import IntersectionJoiner
from srai.loaders import OSMOnlineLoader
from srai.neighbourhoods import H3Neighbourhood
from srai.regionalizers import H3Regionalizer
from srai.utils import geocode_to_region_gdf
from srai.plotting import plot_regions, plot_numeric_data
from pytorch_lightning import seed_everything
from srai.embedders import Hex2VecEmbedder
from srai.joiners import IntersectionJoiner
from srai.loaders import OSMOnlineLoader
from srai.neighbourhoods import H3Neighbourhood
from srai.regionalizers import H3Regionalizer
from srai.utils import geocode_to_region_gdf
from srai.plotting import plot_regions, plot_numeric_data
from pytorch_lightning import seed_everything
In [2]:
Copied!
SEED = 71
seed_everything(SEED)
SEED = 71
seed_everything(SEED)
Global seed set to 71
Out[2]:
71
Load data from OSM¶
First use geocoding to get the area
In [3]:
Copied!
area_gdf = geocode_to_region_gdf("Wrocław, Poland")
plot_regions(area_gdf, tiles_style="CartoDB positron")
area_gdf = geocode_to_region_gdf("Wrocław, Poland")
plot_regions(area_gdf, tiles_style="CartoDB positron")
Out[3]:
Make this Notebook Trusted to load map: File -> Trust Notebook
Next, download the data for the selected region and the specified tags. We're using OSMOnlineLoader
here, as it's faster for low numbers of tags. In a real life scenario with more tags, you would likely want to use the OSMPbfLoader
.
In [4]:
Copied!
tags = {
"leisure": "park",
"landuse": "forest",
"amenity": ["bar", "restaurant", "cafe"],
"water": "river",
"sport": "soccer",
}
loader = OSMOnlineLoader()
features_gdf = loader.load(area_gdf, tags)
folium_map = plot_regions(area_gdf, colormap=["rgba(0,0,0,0)"], tiles_style="CartoDB positron")
features_gdf.explore(m=folium_map)
tags = {
"leisure": "park",
"landuse": "forest",
"amenity": ["bar", "restaurant", "cafe"],
"water": "river",
"sport": "soccer",
}
loader = OSMOnlineLoader()
features_gdf = loader.load(area_gdf, tags)
folium_map = plot_regions(area_gdf, colormap=["rgba(0,0,0,0)"], tiles_style="CartoDB positron")
features_gdf.explore(m=folium_map)
Downloading sport: soccer : 100%|██████████| 7/7 [00:02<00:00, 3.43it/s]
Out[4]:
Make this Notebook Trusted to load map: File -> Trust Notebook
Prepare the data for embedding¶
After downloading the data, we need to prepare it for embedding. Namely - we need to regionalize the selected area, and join the features with regions.
In [5]:
Copied!
regionalizer = H3Regionalizer(resolution=9)
regions_gdf = regionalizer.transform(area_gdf)
plot_regions(regions_gdf, tiles_style="CartoDB positron")
regionalizer = H3Regionalizer(resolution=9)
regions_gdf = regionalizer.transform(area_gdf)
plot_regions(regions_gdf, tiles_style="CartoDB positron")
Out[5]:
Make this Notebook Trusted to load map: File -> Trust Notebook
In [6]:
Copied!
joiner = IntersectionJoiner()
joint_gdf = joiner.transform(regions_gdf, features_gdf)
joint_gdf
joiner = IntersectionJoiner()
joint_gdf = joiner.transform(regions_gdf, features_gdf)
joint_gdf
Out[6]:
region_id | feature_id |
---|---|
891e2042963ffff | way/376030919 |
891e204296fffff | way/376030919 |
891e204296bffff | way/376030919 |
891e2050b6fffff | relation/11999437 |
891e204256bffff | relation/11999437 |
... | ... |
891e2040cdbffff | node/8301120639 |
891e2040193ffff | node/3037683513 |
way/160280179 | |
891e20405bbffff | node/8104080367 |
891e2042b17ffff | way/101562430 |
3779 rows × 0 columns
Embedding¶
After preparing the data we can proceed with generating embeddings for the regions.
In [7]:
Copied!
import warnings
neighbourhood = H3Neighbourhood(regions_gdf)
embedder = Hex2VecEmbedder([15, 10])
with warnings.catch_warnings():
warnings.simplefilter("ignore")
embeddings = embedder.fit_transform(
regions_gdf,
features_gdf,
joint_gdf,
neighbourhood,
trainer_kwargs={"max_epochs": 5, "accelerator": "cpu"},
batch_size=100,
)
embeddings
import warnings
neighbourhood = H3Neighbourhood(regions_gdf)
embedder = Hex2VecEmbedder([15, 10])
with warnings.catch_warnings():
warnings.simplefilter("ignore")
embeddings = embedder.fit_transform(
regions_gdf,
features_gdf,
joint_gdf,
neighbourhood,
trainer_kwargs={"max_epochs": 5, "accelerator": "cpu"},
batch_size=100,
)
embeddings
100%|██████████| 3168/3168 [00:00<00:00, 22398.96it/s] GPU available: False, used: False TPU available: False, using: 0 TPU cores IPU available: False, using: 0 IPUs HPU available: False, using: 0 HPUs | Name | Type | Params --------------------------------------- 0 | encoder | Sequential | 280 --------------------------------------- 280 Trainable params 0 Non-trainable params 280 Total params 0.001 Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=5` reached.
Out[7]:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|---|
region_id | ||||||||||
891e2042963ffff | 0.396230 | -0.310634 | 0.224978 | 0.407004 | 0.189234 | -0.200695 | 0.106866 | -0.112805 | -0.009102 | 0.162045 |
891e2041803ffff | 0.342493 | -0.233499 | -0.034656 | 0.266760 | 0.214640 | -0.124336 | -0.250543 | -0.107750 | -0.219740 | 0.342302 |
891e2050b6fffff | -0.448988 | 0.132562 | -0.399787 | -0.615520 | -0.040260 | 0.279762 | -0.348620 | 0.407011 | -0.110590 | -0.127452 |
891e2041c87ffff | 0.342493 | -0.233499 | -0.034656 | 0.266760 | 0.214640 | -0.124336 | -0.250543 | -0.107750 | -0.219740 | 0.342302 |
891e204064fffff | 0.091055 | 0.205156 | 0.443042 | 0.601309 | -0.176893 | -0.040815 | 0.315152 | -0.403951 | 0.360046 | 0.114688 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
891e204735bffff | 0.342493 | -0.233499 | -0.034656 | 0.266760 | 0.214640 | -0.124336 | -0.250543 | -0.107750 | -0.219740 | 0.342302 |
891e204203bffff | -0.448988 | 0.132562 | -0.399787 | -0.615520 | -0.040260 | 0.279762 | -0.348620 | 0.407011 | -0.110590 | -0.127452 |
891e2051843ffff | -0.448988 | 0.132562 | -0.399787 | -0.615520 | -0.040260 | 0.279762 | -0.348620 | 0.407011 | -0.110590 | -0.127452 |
891e2040017ffff | 0.091055 | 0.205156 | 0.443042 | 0.601309 | -0.176893 | -0.040815 | 0.315152 | -0.403951 | 0.360046 | 0.114688 |
891e2040463ffff | 0.342493 | -0.233499 | -0.034656 | 0.266760 | 0.214640 | -0.124336 | -0.250543 | -0.107750 | -0.219740 | 0.342302 |
3168 rows × 10 columns
Visualizing the embeddings' similarity¶
In [8]:
Copied!
from sklearn.cluster import KMeans
clusterizer = KMeans(n_clusters=5, random_state=SEED)
clusterizer.fit(embeddings)
embeddings["cluster"] = clusterizer.labels_
embeddings
from sklearn.cluster import KMeans
clusterizer = KMeans(n_clusters=5, random_state=SEED)
clusterizer.fit(embeddings)
embeddings["cluster"] = clusterizer.labels_
embeddings
/opt/hostedtoolcache/Python/3.10.12/x64/lib/python3.10/site-packages/sklearn/cluster/_kmeans.py:1412: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning super()._check_params_vs_input(X, default_n_init=10)
Out[8]:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | cluster | |
---|---|---|---|---|---|---|---|---|---|---|---|
region_id | |||||||||||
891e2042963ffff | 0.396230 | -0.310634 | 0.224978 | 0.407004 | 0.189234 | -0.200695 | 0.106866 | -0.112805 | -0.009102 | 0.162045 | 0 |
891e2041803ffff | 0.342493 | -0.233499 | -0.034656 | 0.266760 | 0.214640 | -0.124336 | -0.250543 | -0.107750 | -0.219740 | 0.342302 | 0 |
891e2050b6fffff | -0.448988 | 0.132562 | -0.399787 | -0.615520 | -0.040260 | 0.279762 | -0.348620 | 0.407011 | -0.110590 | -0.127452 | 1 |
891e2041c87ffff | 0.342493 | -0.233499 | -0.034656 | 0.266760 | 0.214640 | -0.124336 | -0.250543 | -0.107750 | -0.219740 | 0.342302 | 0 |
891e204064fffff | 0.091055 | 0.205156 | 0.443042 | 0.601309 | -0.176893 | -0.040815 | 0.315152 | -0.403951 | 0.360046 | 0.114688 | 2 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
891e204735bffff | 0.342493 | -0.233499 | -0.034656 | 0.266760 | 0.214640 | -0.124336 | -0.250543 | -0.107750 | -0.219740 | 0.342302 | 0 |
891e204203bffff | -0.448988 | 0.132562 | -0.399787 | -0.615520 | -0.040260 | 0.279762 | -0.348620 | 0.407011 | -0.110590 | -0.127452 | 1 |
891e2051843ffff | -0.448988 | 0.132562 | -0.399787 | -0.615520 | -0.040260 | 0.279762 | -0.348620 | 0.407011 | -0.110590 | -0.127452 | 1 |
891e2040017ffff | 0.091055 | 0.205156 | 0.443042 | 0.601309 | -0.176893 | -0.040815 | 0.315152 | -0.403951 | 0.360046 | 0.114688 | 2 |
891e2040463ffff | 0.342493 | -0.233499 | -0.034656 | 0.266760 | 0.214640 | -0.124336 | -0.250543 | -0.107750 | -0.219740 | 0.342302 | 0 |
3168 rows × 11 columns
In [9]:
Copied!
plot_numeric_data(regions_gdf, embeddings, "cluster", tiles_style="CartoDB positron")
plot_numeric_data(regions_gdf, embeddings, "cluster", tiles_style="CartoDB positron")
Out[9]:
Make this Notebook Trusted to load map: File -> Trust Notebook