Hex2vec embedder
In [1]:
Copied!
from srai.embedders import Hex2VecEmbedder
from srai.joiners import IntersectionJoiner
from srai.loaders import OSMOnlineLoader
from srai.neighbourhoods import H3Neighbourhood
from srai.regionalizers import H3Regionalizer, geocode_to_region_gdf
from srai.plotting import plot_regions, plot_numeric_data
from pytorch_lightning import seed_everything
from srai.embedders import Hex2VecEmbedder
from srai.joiners import IntersectionJoiner
from srai.loaders import OSMOnlineLoader
from srai.neighbourhoods import H3Neighbourhood
from srai.regionalizers import H3Regionalizer, geocode_to_region_gdf
from srai.plotting import plot_regions, plot_numeric_data
from pytorch_lightning import seed_everything
In [2]:
Copied!
SEED = 71
seed_everything(SEED)
SEED = 71
seed_everything(SEED)
Global seed set to 71
Out[2]:
71
Load data from OSM¶
First use geocoding to get the area
In [3]:
Copied!
area_gdf = geocode_to_region_gdf("Wrocław, Poland")
plot_regions(area_gdf, tiles_style="CartoDB positron")
area_gdf = geocode_to_region_gdf("Wrocław, Poland")
plot_regions(area_gdf, tiles_style="CartoDB positron")
Out[3]:
Make this Notebook Trusted to load map: File -> Trust Notebook
Next, download the data for the selected region and the specified tags. We're using OSMOnlineLoader
here, as it's faster for low numbers of tags. In a real life scenario with more tags, you would likely want to use the OSMPbfLoader
.
In [4]:
Copied!
tags = {
"leisure": "park",
"landuse": "forest",
"amenity": ["bar", "restaurant", "cafe"],
"water": "river",
"sport": "soccer",
}
loader = OSMOnlineLoader()
features_gdf = loader.load(area_gdf, tags)
folium_map = plot_regions(area_gdf, colormap=["rgba(0,0,0,0)"], tiles_style="CartoDB positron")
features_gdf.explore(m=folium_map)
tags = {
"leisure": "park",
"landuse": "forest",
"amenity": ["bar", "restaurant", "cafe"],
"water": "river",
"sport": "soccer",
}
loader = OSMOnlineLoader()
features_gdf = loader.load(area_gdf, tags)
folium_map = plot_regions(area_gdf, colormap=["rgba(0,0,0,0)"], tiles_style="CartoDB positron")
features_gdf.explore(m=folium_map)
Downloading sport: soccer : 100%|██████████| 7/7 [00:02<00:00, 3.26it/s]
Out[4]:
Make this Notebook Trusted to load map: File -> Trust Notebook
Prepare the data for embedding¶
After downloading the data, we need to prepare it for embedding. Namely - we need to regionalize the selected area, and join the features with regions.
In [5]:
Copied!
regionalizer = H3Regionalizer(resolution=9)
regions_gdf = regionalizer.transform(area_gdf)
plot_regions(regions_gdf, tiles_style="CartoDB positron")
regionalizer = H3Regionalizer(resolution=9)
regions_gdf = regionalizer.transform(area_gdf)
plot_regions(regions_gdf, tiles_style="CartoDB positron")
Out[5]:
Make this Notebook Trusted to load map: File -> Trust Notebook
In [6]:
Copied!
joiner = IntersectionJoiner()
joint_gdf = joiner.transform(regions_gdf, features_gdf)
joint_gdf
joiner = IntersectionJoiner()
joint_gdf = joiner.transform(regions_gdf, features_gdf)
joint_gdf
Out[6]:
region_id | feature_id |
---|---|
891e2040d37ffff | way/203499745 |
891e2040d23ffff | way/203499745 |
891e20408abffff | node/8412148483 |
node/8632996865 | |
way/128812093 | |
... | ... |
891e2040943ffff | way/279610367 |
891e2040b4fffff | node/2778923311 |
way/882916410 | |
way/882916406 | |
way/882916392 |
3784 rows × 0 columns
Embedding¶
After preparing the data we can proceed with generating embeddings for the regions.
In [7]:
Copied!
import warnings
neighbourhood = H3Neighbourhood(regions_gdf)
embedder = Hex2VecEmbedder([15, 10])
with warnings.catch_warnings():
warnings.simplefilter("ignore")
embeddings = embedder.fit_transform(
regions_gdf,
features_gdf,
joint_gdf,
neighbourhood,
trainer_kwargs={"max_epochs": 5, "accelerator": "cpu"},
batch_size=100,
)
embeddings
import warnings
neighbourhood = H3Neighbourhood(regions_gdf)
embedder = Hex2VecEmbedder([15, 10])
with warnings.catch_warnings():
warnings.simplefilter("ignore")
embeddings = embedder.fit_transform(
regions_gdf,
features_gdf,
joint_gdf,
neighbourhood,
trainer_kwargs={"max_epochs": 5, "accelerator": "cpu"},
batch_size=100,
)
embeddings
100%|██████████| 3168/3168 [00:00<00:00, 22134.08it/s] GPU available: False, used: False TPU available: False, using: 0 TPU cores IPU available: False, using: 0 IPUs HPU available: False, using: 0 HPUs | Name | Type | Params --------------------------------------- 0 | encoder | Sequential | 280 --------------------------------------- 280 Trainable params 0 Non-trainable params 280 Total params 0.001 Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=5` reached.
Out[7]:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|---|
region_id | ||||||||||
891e2040d37ffff | 0.091029 | 0.198486 | 0.462822 | 0.608710 | -0.178001 | -0.030941 | 0.333173 | -0.411951 | 0.380527 | 0.141286 |
891e2043137ffff | 0.369756 | -0.236112 | -0.015587 | 0.292034 | 0.223387 | -0.123709 | -0.234603 | -0.120992 | -0.217188 | 0.322945 |
891e204298fffff | 0.369756 | -0.236112 | -0.015587 | 0.292034 | 0.223387 | -0.123709 | -0.234603 | -0.120992 | -0.217188 | 0.322945 |
891e20408abffff | -0.284767 | 0.920129 | 0.769865 | 0.913052 | -0.738198 | -0.142455 | 0.988884 | -0.510422 | 1.059452 | -0.274886 |
891e204566bffff | 0.446863 | -0.329897 | 0.249455 | 0.416898 | 0.184148 | -0.203369 | 0.122747 | -0.181731 | -0.034439 | 0.143095 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
891e204328fffff | -0.802973 | 0.207788 | -0.622428 | -1.188089 | -0.117224 | 0.356134 | -0.176866 | 0.710927 | -0.277629 | -0.491044 |
891e204330fffff | 0.369756 | -0.236112 | -0.015587 | 0.292034 | 0.223387 | -0.123709 | -0.234603 | -0.120992 | -0.217188 | 0.322945 |
891e2043363ffff | 0.369756 | -0.236112 | -0.015587 | 0.292034 | 0.223387 | -0.123709 | -0.234603 | -0.120992 | -0.217188 | 0.322945 |
891e204052bffff | 0.091029 | 0.198486 | 0.462822 | 0.608710 | -0.178001 | -0.030941 | 0.333173 | -0.411951 | 0.380527 | 0.141286 |
891e2040b4fffff | 0.343026 | -0.255931 | 0.160579 | 0.439385 | 0.140483 | -0.362954 | 0.327634 | -0.134918 | 0.146508 | 0.067237 |
3168 rows × 10 columns
Visualizing the embeddings' similarity¶
In [8]:
Copied!
from sklearn.cluster import KMeans
clusterizer = KMeans(n_clusters=5, random_state=SEED)
clusterizer.fit(embeddings)
embeddings["cluster"] = clusterizer.labels_
embeddings
from sklearn.cluster import KMeans
clusterizer = KMeans(n_clusters=5, random_state=SEED)
clusterizer.fit(embeddings)
embeddings["cluster"] = clusterizer.labels_
embeddings
/opt/hostedtoolcache/Python/3.10.12/x64/lib/python3.10/site-packages/sklearn/cluster/_kmeans.py:1412: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning super()._check_params_vs_input(X, default_n_init=10)
Out[8]:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | cluster | |
---|---|---|---|---|---|---|---|---|---|---|---|
region_id | |||||||||||
891e2040d37ffff | 0.091029 | 0.198486 | 0.462822 | 0.608710 | -0.178001 | -0.030941 | 0.333173 | -0.411951 | 0.380527 | 0.141286 | 4 |
891e2043137ffff | 0.369756 | -0.236112 | -0.015587 | 0.292034 | 0.223387 | -0.123709 | -0.234603 | -0.120992 | -0.217188 | 0.322945 | 1 |
891e204298fffff | 0.369756 | -0.236112 | -0.015587 | 0.292034 | 0.223387 | -0.123709 | -0.234603 | -0.120992 | -0.217188 | 0.322945 | 1 |
891e20408abffff | -0.284767 | 0.920129 | 0.769865 | 0.913052 | -0.738198 | -0.142455 | 0.988884 | -0.510422 | 1.059452 | -0.274886 | 4 |
891e204566bffff | 0.446863 | -0.329897 | 0.249455 | 0.416898 | 0.184148 | -0.203369 | 0.122747 | -0.181731 | -0.034439 | 0.143095 | 1 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
891e204328fffff | -0.802973 | 0.207788 | -0.622428 | -1.188089 | -0.117224 | 0.356134 | -0.176866 | 0.710927 | -0.277629 | -0.491044 | 0 |
891e204330fffff | 0.369756 | -0.236112 | -0.015587 | 0.292034 | 0.223387 | -0.123709 | -0.234603 | -0.120992 | -0.217188 | 0.322945 | 1 |
891e2043363ffff | 0.369756 | -0.236112 | -0.015587 | 0.292034 | 0.223387 | -0.123709 | -0.234603 | -0.120992 | -0.217188 | 0.322945 | 1 |
891e204052bffff | 0.091029 | 0.198486 | 0.462822 | 0.608710 | -0.178001 | -0.030941 | 0.333173 | -0.411951 | 0.380527 | 0.141286 | 4 |
891e2040b4fffff | 0.343026 | -0.255931 | 0.160579 | 0.439385 | 0.140483 | -0.362954 | 0.327634 | -0.134918 | 0.146508 | 0.067237 | 1 |
3168 rows × 11 columns
In [9]:
Copied!
plot_numeric_data(regions_gdf, "cluster", embeddings)
plot_numeric_data(regions_gdf, "cluster", embeddings)
Out[9]:
Make this Notebook Trusted to load map: File -> Trust Notebook