Voronoi regionalizer
In [1]:
Copied!
import geopandas as gpd
import numpy as np
import plotly.express as px
from shapely.geometry import Point
from srai.regionalizers import VoronoiRegionalizer, geocode_to_region_gdf
from srai.constants import WGS84_CRS
from srai.plotting.folium_wrapper import plot_regions
import geopandas as gpd
import numpy as np
import plotly.express as px
from shapely.geometry import Point
from srai.regionalizers import VoronoiRegionalizer, geocode_to_region_gdf
from srai.constants import WGS84_CRS
from srai.plotting.folium_wrapper import plot_regions
Regionalizer whole Earth¶
Basic usage of VoronoiRegionalizer
to cover whole Earth using 6 poles.
In [2]:
Copied!
# 6 poles of the Earth
seeds_gdf = gpd.GeoDataFrame(
{
"geometry": [
Point(0, 0),
Point(90, 0),
Point(180, 0),
Point(-90, 0),
Point(0, 90),
Point(0, -90),
]
},
index=[1, 2, 3, 4, 5, 6],
crs=WGS84_CRS,
)
# 6 poles of the Earth
seeds_gdf = gpd.GeoDataFrame(
{
"geometry": [
Point(0, 0),
Point(90, 0),
Point(180, 0),
Point(-90, 0),
Point(0, 90),
Point(0, -90),
]
},
index=[1, 2, 3, 4, 5, 6],
crs=WGS84_CRS,
)
In [3]:
Copied!
seeds_gdf.plot()
seeds_gdf.plot()
Out[3]:
<Axes: >
In [4]:
Copied!
vr = VoronoiRegionalizer(seeds=seeds_gdf)
vr = VoronoiRegionalizer(seeds=seeds_gdf)
In [5]:
Copied!
result_gdf = vr.transform()
result_gdf = vr.transform()
Generating regions: 0%| | 0/6 [00:00<?, ?it/s]/opt/hostedtoolcache/Python/3.10.12/x64/lib/python3.10/site-packages/spherical_geometry/great_circle_arc.py:365: RuntimeWarning: invalid value encountered in divide return P / l /opt/hostedtoolcache/Python/3.10.12/x64/lib/python3.10/site-packages/spherical_geometry/great_circle_arc.py:261: RuntimeWarning: invalid value encountered in intersects return math_util.intersects(A, B, C, D) Generating regions: 50%|█████ | 3/6 [00:02<00:02, 1.38it/s]/opt/hostedtoolcache/Python/3.10.12/x64/lib/python3.10/site-packages/spherical_geometry/great_circle_arc.py:261: RuntimeWarning: invalid value encountered in intersects return math_util.intersects(A, B, C, D) Generating regions: 67%|██████▋ | 4/6 [00:02<00:01, 1.57it/s]/opt/hostedtoolcache/Python/3.10.12/x64/lib/python3.10/site-packages/spherical_geometry/great_circle_arc.py:261: RuntimeWarning: invalid value encountered in intersects return math_util.intersects(A, B, C, D) Generating regions: 83%|████████▎ | 5/6 [00:03<00:00, 1.70it/s]/opt/hostedtoolcache/Python/3.10.12/x64/lib/python3.10/site-packages/spherical_geometry/great_circle_arc.py:261: RuntimeWarning: invalid value encountered in intersects return math_util.intersects(A, B, C, D) Generating regions: 100%|██████████| 6/6 [00:03<00:00, 1.58it/s]
In [6]:
Copied!
result_gdf
result_gdf
Out[6]:
geometry | |
---|---|
region_id | |
6 | POLYGON ((0.12722 -44.99993, 0.25444 -44.99972... |
4 | POLYGON ((-135.00000 -35.08447, -135.00000 -34... |
1 | POLYGON ((0.12722 44.99993, 0.25444 44.99972, ... |
3 | MULTIPOLYGON (((135.00000 0.17992, 135.00000 0... |
2 | POLYGON ((45.00000 0.08996, 45.00000 0.17992, ... |
5 | POLYGON ((180.00000 90.00000, 180.00000 89.910... |
Globe view¶
In [7]:
Copied!
fig = px.choropleth(
result_gdf,
geojson=result_gdf.geometry,
locations=result_gdf.index,
color=result_gdf.index,
color_continuous_scale=px.colors.sequential.Viridis,
)
fig2 = px.scatter_geo(seeds_gdf, lat=seeds_gdf.geometry.y, lon=seeds_gdf.geometry.x)
fig.update_traces(marker={"opacity": 0.6}, selector=dict(type="choropleth"))
fig.add_trace(fig2.data[0])
fig.update_traces(marker_color="white", marker_size=10, selector=dict(type="scattergeo"))
fig.update_layout(coloraxis_showscale=False)
fig.update_geos(
projection_type="orthographic",
projection_rotation_lon=20,
projection_rotation_lat=30,
showlakes=False,
)
fig.update_layout(height=800, width=800, margin={"r": 0, "t": 0, "l": 0, "b": 0})
fig.show(renderer="png") # replace with fig.show() to allow interactivity
fig = px.choropleth(
result_gdf,
geojson=result_gdf.geometry,
locations=result_gdf.index,
color=result_gdf.index,
color_continuous_scale=px.colors.sequential.Viridis,
)
fig2 = px.scatter_geo(seeds_gdf, lat=seeds_gdf.geometry.y, lon=seeds_gdf.geometry.x)
fig.update_traces(marker={"opacity": 0.6}, selector=dict(type="choropleth"))
fig.add_trace(fig2.data[0])
fig.update_traces(marker_color="white", marker_size=10, selector=dict(type="scattergeo"))
fig.update_layout(coloraxis_showscale=False)
fig.update_geos(
projection_type="orthographic",
projection_rotation_lon=20,
projection_rotation_lat=30,
showlakes=False,
)
fig.update_layout(height=800, width=800, margin={"r": 0, "t": 0, "l": 0, "b": 0})
fig.show(renderer="png") # replace with fig.show() to allow interactivity
2D OSM View¶
In [8]:
Copied!
folium_map = plot_regions(result_gdf)
seeds_gdf.explore(
m=folium_map,
style_kwds=dict(color="#444", opacity=1, fillColor="#f2f2f2", fillOpacity=1),
marker_kwds=dict(radius=3),
)
folium_map = plot_regions(result_gdf)
seeds_gdf.explore(
m=folium_map,
style_kwds=dict(color="#444", opacity=1, fillColor="#f2f2f2", fillOpacity=1),
marker_kwds=dict(radius=3),
)
Out[8]:
Make this Notebook Trusted to load map: File -> Trust Notebook
Regionalize single country¶
Drawing a list of arbitrary points inside of the country boundary and using them for regionalization of the same geometry.
In [9]:
Copied!
uk_gdf = geocode_to_region_gdf(query=["R62149"], by_osmid=True)
uk_shape = uk_gdf.iloc[0].geometry # get the Polygon
uk_gdf = geocode_to_region_gdf(query=["R62149"], by_osmid=True)
uk_shape = uk_gdf.iloc[0].geometry # get the Polygon
In [10]:
Copied!
uk_gdf
uk_gdf
Out[10]:
geometry | |
---|---|
region_id | |
United Kingdom | MULTIPOLYGON (((-14.01552 57.60263, -14.01459 ... |
In [11]:
Copied!
def generate_random_points(shape, n_points=100):
minx, miny, maxx, maxy = shape.bounds
pts = []
while len(pts) < 4:
randx = np.random.uniform(minx, maxx, n_points)
randy = np.random.uniform(miny, maxy, n_points)
coords = np.vstack((randx, randy)).T
# use only the points inside the geographic area
pts = [p for p in list(map(Point, coords)) if p.within(shape)]
del coords # not used any more
return pts
def generate_random_points(shape, n_points=100):
minx, miny, maxx, maxy = shape.bounds
pts = []
while len(pts) < 4:
randx = np.random.uniform(minx, maxx, n_points)
randy = np.random.uniform(miny, maxy, n_points)
coords = np.vstack((randx, randy)).T
# use only the points inside the geographic area
pts = [p for p in list(map(Point, coords)) if p.within(shape)]
del coords # not used any more
return pts
In [12]:
Copied!
pts = generate_random_points(uk_shape)
uk_seeds_gdf = gpd.GeoDataFrame(
{"geometry": pts},
index=list(range(len(pts))),
crs=WGS84_CRS,
)
pts = generate_random_points(uk_shape)
uk_seeds_gdf = gpd.GeoDataFrame(
{"geometry": pts},
index=list(range(len(pts))),
crs=WGS84_CRS,
)
Random points on a map¶
In [13]:
Copied!
folium_map = plot_regions(uk_gdf, tiles_style="CartoDB positron")
uk_seeds_gdf.explore(
m=folium_map,
style_kwds=dict(color="#444", opacity=1, fillColor="#f2f2f2", fillOpacity=1),
marker_kwds=dict(radius=3),
)
folium_map = plot_regions(uk_gdf, tiles_style="CartoDB positron")
uk_seeds_gdf.explore(
m=folium_map,
style_kwds=dict(color="#444", opacity=1, fillColor="#f2f2f2", fillOpacity=1),
marker_kwds=dict(radius=3),
)
Out[13]:
Make this Notebook Trusted to load map: File -> Trust Notebook
In [14]:
Copied!
vr_uk = VoronoiRegionalizer(seeds=uk_seeds_gdf)
vr_uk = VoronoiRegionalizer(seeds=uk_seeds_gdf)
In [15]:
Copied!
uk_result_gdf = vr_uk.transform(gdf=uk_gdf)
uk_result_gdf = vr_uk.transform(gdf=uk_gdf)
Generating regions: 100%|██████████| 24/24 [00:06<00:00, 3.70it/s]
In [16]:
Copied!
uk_result_gdf.head()
uk_result_gdf.head()
Out[16]:
geometry | |
---|---|
region_id | |
6 | POLYGON ((-5.29365 50.99122, -5.15432 50.96423... |
11 | POLYGON ((0.13422 51.49328, 0.26825 51.45972, ... |
20 | POLYGON ((0.14326 52.26937, 0.28664 52.28930, ... |
3 | POLYGON ((2.01703 52.51474, 1.87217 52.49692, ... |
16 | MULTIPOLYGON (((-5.72215 57.24859, -5.76929 57... |
Generated regions on a map¶
In [17]:
Copied!
folium_map = plot_regions(uk_result_gdf, tiles_style="CartoDB positron")
uk_seeds_gdf.explore(
m=folium_map,
style_kwds=dict(color="#444", opacity=1, fillColor="#f2f2f2", fillOpacity=1),
marker_kwds=dict(radius=3),
)
folium_map = plot_regions(uk_result_gdf, tiles_style="CartoDB positron")
uk_seeds_gdf.explore(
m=folium_map,
style_kwds=dict(color="#444", opacity=1, fillColor="#f2f2f2", fillOpacity=1),
marker_kwds=dict(radius=3),
)
Out[17]:
Make this Notebook Trusted to load map: File -> Trust Notebook
Higher amount of points¶
Example of railway stations in Germany (5000+ seeds) with multiprocessing.
In [18]:
Copied!
stations_csv = gpd.pd.read_csv(
"https://raw.githubusercontent.com/trainline-eu/stations/master/stations.csv",
sep=";",
index_col="id",
usecols=["id", "latitude", "longitude", "country"],
)
stations_csv
stations_csv = gpd.pd.read_csv(
"https://raw.githubusercontent.com/trainline-eu/stations/master/stations.csv",
sep=";",
index_col="id",
usecols=["id", "latitude", "longitude", "country"],
)
stations_csv
Out[18]:
latitude | longitude | country | |
---|---|---|---|
id | |||
1 | 44.081790 | 6.001625 | FR |
2 | 44.061565 | 5.997373 | FR |
3 | 44.063863 | 6.011248 | FR |
4 | 44.350000 | 6.350000 | FR |
6 | 44.088710 | 6.222982 | FR |
... | ... | ... | ... |
68186 | 46.169020 | 10.763700 | IT |
68187 | 47.369300 | -1.177800 | FR |
68188 | 44.870900 | -0.614000 | FR |
68189 | 41.224651 | 16.314623 | IT |
68190 | 45.234444 | 15.296389 | HR |
64048 rows × 3 columns
In [19]:
Copied!
stations = []
positions = set()
for idx, r in stations_csv.iterrows():
if r.country != "DE" or gpd.pd.isna(r.latitude) or gpd.pd.isna(r.longitude):
continue
pos = round(r.longitude, 5), round(r.latitude, 5)
if not pos in positions:
stations.append({"id": idx, "geometry": Point(*pos)})
positions.add(pos)
stations_gdf = gpd.GeoDataFrame(data=stations, crs=WGS84_CRS).set_index("id")
del stations_csv
del stations
del positions
stations_gdf.head()
stations = []
positions = set()
for idx, r in stations_csv.iterrows():
if r.country != "DE" or gpd.pd.isna(r.latitude) or gpd.pd.isna(r.longitude):
continue
pos = round(r.longitude, 5), round(r.latitude, 5)
if not pos in positions:
stations.append({"id": idx, "geometry": Point(*pos)})
positions.add(pos)
stations_gdf = gpd.GeoDataFrame(data=stations, crs=WGS84_CRS).set_index("id")
del stations_csv
del stations
del positions
stations_gdf.head()
Out[19]:
geometry | |
---|---|
id | |
6691 | POINT (9.03081 51.73032) |
6692 | POINT (11.80785 49.09284) |
6693 | POINT (10.48471 53.14212) |
6695 | POINT (6.59351 50.44187) |
6696 | POINT (8.31165 49.93009) |
In [20]:
Copied!
vr_rail = VoronoiRegionalizer(seeds=stations_gdf)
vr_rail = VoronoiRegionalizer(seeds=stations_gdf)
In [21]:
Copied!
rail_result_gdf = vr_rail.transform()
rail_result_gdf = vr_rail.transform()
Germany view¶
In [22]:
Copied!
folium_map = plot_regions(rail_result_gdf, tiles_style="CartoDB positron")
stations_gdf.explore(
m=folium_map,
style_kwds=dict(color="#444", opacity=1, fillColor="#f2f2f2", fillOpacity=1),
marker_kwds=dict(radius=1),
)
folium_map.fit_bounds([(54.98310, 5.98865), (47.30248, 15.01699)])
folium_map
folium_map = plot_regions(rail_result_gdf, tiles_style="CartoDB positron")
stations_gdf.explore(
m=folium_map,
style_kwds=dict(color="#444", opacity=1, fillColor="#f2f2f2", fillOpacity=1),
marker_kwds=dict(radius=1),
)
folium_map.fit_bounds([(54.98310, 5.98865), (47.30248, 15.01699)])
folium_map
Out[22]:
Make this Notebook Trusted to load map: File -> Trust Notebook
Berlin view¶
In [23]:
Copied!
# Berlin
folium_map.fit_bounds([(52.51637 + 0.1, 13.40665 + 0.1), (52.51637 - 0.1, 13.40665 - 0.1)])
folium_map
# Berlin
folium_map.fit_bounds([(52.51637 + 0.1, 13.40665 + 0.1), (52.51637 - 0.1, 13.40665 - 0.1)])
folium_map
Out[23]:
Make this Notebook Trusted to load map: File -> Trust Notebook
Difference between spherical voronoi and 2d voronoi¶
Showing the difference between working on the sphere and projected 2D plane.
Uses shapely.voronoi_polygons
function as an example.
shapely.voronoi_diagram
function allows for a quick division of the Earth using list of seeds on a projected 2d plane.
This results in straight lines with angles distorted and polygons differences
might be substantial during comparisons or any area calculations.
In [24]:
Copied!
from shapely.ops import voronoi_diagram
from plotly.subplots import make_subplots
from shapely.ops import voronoi_diagram
from plotly.subplots import make_subplots
In [25]:
Copied!
pl_gdf = geocode_to_region_gdf(query=["R49715"], by_osmid=True)
pl_gdf_shape = pl_gdf.iloc[0].geometry # get the Polygon
pl_gdf = geocode_to_region_gdf(query=["R49715"], by_osmid=True)
pl_gdf_shape = pl_gdf.iloc[0].geometry # get the Polygon
In [26]:
Copied!
pts = generate_random_points(pl_gdf_shape)
pl_seeds_gdf = gpd.GeoDataFrame(
{"geometry": pts},
index=list(range(len(pts))),
crs=WGS84_CRS,
)
pts = generate_random_points(pl_gdf_shape)
pl_seeds_gdf = gpd.GeoDataFrame(
{"geometry": pts},
index=list(range(len(pts))),
crs=WGS84_CRS,
)
In [27]:
Copied!
region_polygons = list(
voronoi_diagram(pl_seeds_gdf.geometry.unary_union, envelope=pl_gdf_shape).normalize().geoms
)
region_polygons = list(
voronoi_diagram(pl_seeds_gdf.geometry.unary_union, envelope=pl_gdf_shape).normalize().geoms
)
In [28]:
Copied!
pl_regions_2d_gdf = gpd.GeoDataFrame(
{"geometry": [polygon for polygon in region_polygons]},
index=list(range(len(region_polygons))),
crs=WGS84_CRS,
).clip(pl_gdf_shape)
pl_regions_2d_gdf = gpd.GeoDataFrame(
{"geometry": [polygon for polygon in region_polygons]},
index=list(range(len(region_polygons))),
crs=WGS84_CRS,
).clip(pl_gdf_shape)
In [29]:
Copied!
pl_regions_2d_gdf
pl_regions_2d_gdf
Out[29]:
geometry | |
---|---|
31 | POLYGON ((18.57741 50.16138, 18.87397 50.40943... |
24 | POLYGON ((20.20662 50.84976, 20.21139 50.84962... |
22 | POLYGON ((21.03307 51.08242, 21.83410 50.60255... |
44 | POLYGON ((18.58816 51.21469, 18.88671 50.71613... |
43 | POLYGON ((18.88671 50.71613, 19.46110 51.11189... |
... | ... |
60 | POLYGON ((19.19571 54.70446, 19.40174 54.60438... |
14 | POLYGON ((18.26959 54.43121, 17.94014 54.05019... |
15 | MULTIPOLYGON (((15.10605 53.71909, 15.01669 53... |
21 | POLYGON ((22.15032 53.92536, 21.94892 53.93306... |
9 | POLYGON ((18.44605 55.02332, 18.44710 55.02311... |
63 rows × 1 columns
In [30]:
Copied!
vr_pl = VoronoiRegionalizer(seeds=pl_seeds_gdf)
vr_pl = VoronoiRegionalizer(seeds=pl_seeds_gdf)
In [31]:
Copied!
pl_result_gdf = vr_pl.transform(gdf=pl_gdf)
pl_result_gdf = vr_pl.transform(gdf=pl_gdf)
Generating regions: 100%|██████████| 63/63 [00:09<00:00, 6.59it/s]
In [32]:
Copied!
pl_result_gdf
pl_result_gdf
Out[32]:
geometry | |
---|---|
region_id | |
31 | MULTIPOLYGON (((20.45569 49.88224, 20.56089 49... |
27 | POLYGON ((18.50653 49.97701, 18.56751 50.05802... |
13 | MULTIPOLYGON (((15.09098 51.38437, 15.22261 51... |
56 | MULTIPOLYGON (((22.62949 50.25347, 22.75025 50... |
21 | POLYGON ((14.97739 51.35242, 14.97757 51.35305... |
... | ... |
8 | POLYGON ((20.74544 53.39756, 20.61375 53.32776... |
16 | POLYGON ((22.19171 54.09386, 22.32900 54.17035... |
46 | POLYGON ((21.63514 54.30617, 21.74064 54.23407... |
17 | POLYGON ((19.35177 54.57781, 19.19978 54.54693... |
39 | POLYGON ((22.60509 54.32286, 22.46679 54.24668... |
63 rows × 1 columns
In [33]:
Copied!
choropleth_1 = px.choropleth(
pl_result_gdf,
geojson=pl_result_gdf.geometry,
locations=pl_result_gdf.index,
color=pl_result_gdf.index,
color_continuous_scale=px.colors.qualitative.Plotly,
)
choropleth_2 = px.choropleth(
pl_regions_2d_gdf,
geojson=pl_regions_2d_gdf.geometry,
locations=pl_regions_2d_gdf.index,
color=pl_regions_2d_gdf.index,
color_continuous_scale=px.colors.qualitative.Plotly,
)
points_plot = px.scatter_geo(pl_seeds_gdf, lat=pl_seeds_gdf.geometry.y, lon=pl_seeds_gdf.geometry.x)
fig = make_subplots(
rows=2,
cols=2,
specs=[
[{"type": "scattergeo"}, {"type": "scattergeo"}],
[{"type": "scattergeo"}, {"type": "scattergeo"}],
],
horizontal_spacing=0.01,
vertical_spacing=0.0,
)
fig.add_trace(choropleth_1["data"][0], row=1, col=1)
fig.add_trace(choropleth_1["data"][0], row=2, col=1)
fig.add_trace(choropleth_2["data"][0], row=1, col=2)
fig.add_trace(choropleth_2["data"][0], row=2, col=2)
for r in [1, 2]:
for c in [1, 2]:
fig.add_trace(points_plot.data[0], row=r, col=c)
minx, miny, maxx, maxy = pl_gdf_shape.bounds
fig.update_traces(marker_color="black", marker_size=6, selector=dict(type="scattergeo"))
fig.update_layout(coloraxis_showscale=False)
fig.update_geos(
projection_type="natural earth",
lataxis_range=[miny - 1, maxy + 1],
lonaxis_range=[minx - 1, maxx + 1],
resolution=50,
row=1,
showlakes=False,
)
fig.update_geos(
projection_type="natural earth",
lataxis_range=[miny + 1, maxy - 1],
lonaxis_range=[minx + 2, maxx - 2],
resolution=50,
row=2,
showlakes=False,
)
fig.update_traces(marker={"opacity": 0.6}, selector=dict(type="choropleth"), row=1)
fig.update_traces(marker={"opacity": 0.25}, selector=dict(type="choropleth"), row=2)
fig.update_layout(
height=800,
width=800,
title_text="Side By Side Subplots (Left: Spherical voronoi, Right: 2D voronoi)",
margin={"r": 5, "t": 50, "l": 5, "b": 0},
)
fig.show(renderer="png") # replace with fig.show() to allow interactivity
choropleth_1 = px.choropleth(
pl_result_gdf,
geojson=pl_result_gdf.geometry,
locations=pl_result_gdf.index,
color=pl_result_gdf.index,
color_continuous_scale=px.colors.qualitative.Plotly,
)
choropleth_2 = px.choropleth(
pl_regions_2d_gdf,
geojson=pl_regions_2d_gdf.geometry,
locations=pl_regions_2d_gdf.index,
color=pl_regions_2d_gdf.index,
color_continuous_scale=px.colors.qualitative.Plotly,
)
points_plot = px.scatter_geo(pl_seeds_gdf, lat=pl_seeds_gdf.geometry.y, lon=pl_seeds_gdf.geometry.x)
fig = make_subplots(
rows=2,
cols=2,
specs=[
[{"type": "scattergeo"}, {"type": "scattergeo"}],
[{"type": "scattergeo"}, {"type": "scattergeo"}],
],
horizontal_spacing=0.01,
vertical_spacing=0.0,
)
fig.add_trace(choropleth_1["data"][0], row=1, col=1)
fig.add_trace(choropleth_1["data"][0], row=2, col=1)
fig.add_trace(choropleth_2["data"][0], row=1, col=2)
fig.add_trace(choropleth_2["data"][0], row=2, col=2)
for r in [1, 2]:
for c in [1, 2]:
fig.add_trace(points_plot.data[0], row=r, col=c)
minx, miny, maxx, maxy = pl_gdf_shape.bounds
fig.update_traces(marker_color="black", marker_size=6, selector=dict(type="scattergeo"))
fig.update_layout(coloraxis_showscale=False)
fig.update_geos(
projection_type="natural earth",
lataxis_range=[miny - 1, maxy + 1],
lonaxis_range=[minx - 1, maxx + 1],
resolution=50,
row=1,
showlakes=False,
)
fig.update_geos(
projection_type="natural earth",
lataxis_range=[miny + 1, maxy - 1],
lonaxis_range=[minx + 2, maxx - 2],
resolution=50,
row=2,
showlakes=False,
)
fig.update_traces(marker={"opacity": 0.6}, selector=dict(type="choropleth"), row=1)
fig.update_traces(marker={"opacity": 0.25}, selector=dict(type="choropleth"), row=2)
fig.update_layout(
height=800,
width=800,
title_text="Side By Side Subplots (Left: Spherical voronoi, Right: 2D voronoi)",
margin={"r": 5, "t": 50, "l": 5, "b": 0},
)
fig.show(renderer="png") # replace with fig.show() to allow interactivity