GeoVexEmbedder
Bases: CountEmbedder
GeoVex Embedder.
Source code in srai/embedders/geovex/embedder.py
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
|
__init__
__init__(target_features: Union[List[str], OsmTagsFilter, GroupedOsmTagsFilter], batch_size: Optional[int] = 32, neighbourhood_radius: int = 4, convolutional_layers: int = 2, embedding_size: int = 32, convolutional_layer_size: int = 256) -> None
Initialize GeoVex Embedder.
PARAMETER | DESCRIPTION |
---|---|
target_features |
The features
that are to be used in the embedding. Should be in "flat" format,
i.e. "
TYPE:
|
batch_size |
Batch size. Defaults to 32.
TYPE:
|
convolutional_layers |
Number of convolutional layers. Defaults to 2.
TYPE:
|
neighbourhood_radius |
Radius of the neighbourhood. Defaults to 4.
TYPE:
|
embedding_size |
Size of the embedding. Defaults to 32.
TYPE:
|
convolutional_layer_size |
Size of the first convolutional layer.
TYPE:
|
Source code in srai/embedders/geovex/embedder.py
fit
fit(regions_gdf: gpd.GeoDataFrame, features_gdf: gpd.GeoDataFrame, joint_gdf: gpd.GeoDataFrame, neighbourhood: H3Neighbourhood, learning_rate: float = 0.001, trainer_kwargs: Optional[Dict[str, Any]] = None) -> None
Fit the model to the data.
PARAMETER | DESCRIPTION |
---|---|
regions_gdf |
Region indexes and geometries.
TYPE:
|
features_gdf |
Feature indexes, geometries and feature values.
TYPE:
|
joint_gdf |
Joiner result with region-feature multi-index.
TYPE:
|
neighbourhood |
The neighbourhood to use. Should be intialized with the same regions.
TYPE:
|
learning_rate |
Learning rate. Defaults to 0.001.
TYPE:
|
trainer_kwargs |
Trainer kwargs. This is where the number of epochs can be set. Defaults to None.
TYPE:
|
Source code in srai/embedders/geovex/embedder.py
fit_transform
fit_transform(regions_gdf: gpd.GeoDataFrame, features_gdf: gpd.GeoDataFrame, joint_gdf: gpd.GeoDataFrame, neighbourhood: H3Neighbourhood, learning_rate: float = 0.001, trainer_kwargs: Optional[Dict[str, Any]] = None) -> pd.DataFrame
Fit the model to the data and create region embeddings.
PARAMETER | DESCRIPTION |
---|---|
regions_gdf |
Region indexes and geometries.
TYPE:
|
features_gdf |
Feature indexes, geometries and feature values.
TYPE:
|
joint_gdf |
Joiner result with region-feature multi-index.
TYPE:
|
neighbourhood |
The neighbourhood to use. Should be intialized with the same regions.
TYPE:
|
negative_sample_k_distance |
Distance of negative samples. Defaults to 2.
TYPE:
|
learning_rate |
Learning rate. Defaults to 0.001.
TYPE:
|
trainer_kwargs |
Trainer kwargs. This is where the number of epochs can be set. Defaults to None.
TYPE:
|
Source code in srai/embedders/geovex/embedder.py
transform
transform(regions_gdf: gpd.GeoDataFrame, features_gdf: gpd.GeoDataFrame, joint_gdf: gpd.GeoDataFrame) -> pd.DataFrame
Create region embeddings.
PARAMETER | DESCRIPTION |
---|---|
regions_gdf |
Region indexes and geometries.
TYPE:
|
features_gdf |
Feature indexes, geometries and feature values.
TYPE:
|
joint_gdf |
Joiner result with region-feature multi-index.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
pd.DataFrame
|
pd.DataFrame: Region embeddings. |