Hex2vec embedder
In [1]:
Copied!
from srai.embedders import Hex2VecEmbedder
from srai.joiners import IntersectionJoiner
from srai.loaders import OSMOnlineLoader
from srai.neighbourhoods import H3Neighbourhood
from srai.regionalizers import H3Regionalizer, geocode_to_region_gdf
from srai.plotting import plot_regions, plot_numeric_data
from pytorch_lightning import seed_everything
from srai.embedders import Hex2VecEmbedder
from srai.joiners import IntersectionJoiner
from srai.loaders import OSMOnlineLoader
from srai.neighbourhoods import H3Neighbourhood
from srai.regionalizers import H3Regionalizer, geocode_to_region_gdf
from srai.plotting import plot_regions, plot_numeric_data
from pytorch_lightning import seed_everything
In [2]:
Copied!
SEED = 71
seed_everything(SEED)
SEED = 71
seed_everything(SEED)
Seed set to 71
Out[2]:
71
Load data from OSM¶
First use geocoding to get the area
In [3]:
Copied!
area_gdf = geocode_to_region_gdf("Wrocław, Poland")
plot_regions(area_gdf, tiles_style="CartoDB positron")
area_gdf = geocode_to_region_gdf("Wrocław, Poland")
plot_regions(area_gdf, tiles_style="CartoDB positron")
Out[3]:
Make this Notebook Trusted to load map: File -> Trust Notebook
Next, download the data for the selected region and the specified tags. We're using OSMOnlineLoader
here, as it's faster for low numbers of tags. In a real life scenario with more tags, you would likely want to use the OSMPbfLoader
.
In [4]:
Copied!
tags = {
"leisure": "park",
"landuse": "forest",
"amenity": ["bar", "restaurant", "cafe"],
"water": "river",
"sport": "soccer",
}
loader = OSMOnlineLoader()
features_gdf = loader.load(area_gdf, tags)
folium_map = plot_regions(area_gdf, colormap=["rgba(0,0,0,0)"], tiles_style="CartoDB positron")
features_gdf.explore(m=folium_map)
tags = {
"leisure": "park",
"landuse": "forest",
"amenity": ["bar", "restaurant", "cafe"],
"water": "river",
"sport": "soccer",
}
loader = OSMOnlineLoader()
features_gdf = loader.load(area_gdf, tags)
folium_map = plot_regions(area_gdf, colormap=["rgba(0,0,0,0)"], tiles_style="CartoDB positron")
features_gdf.explore(m=folium_map)
Downloading sport: soccer : 100%|██████████| 7/7 [00:03<00:00, 1.86it/s]
Out[4]:
Make this Notebook Trusted to load map: File -> Trust Notebook
Prepare the data for embedding¶
After downloading the data, we need to prepare it for embedding. Namely - we need to regionalize the selected area, and join the features with regions.
In [5]:
Copied!
regionalizer = H3Regionalizer(resolution=9)
regions_gdf = regionalizer.transform(area_gdf)
plot_regions(regions_gdf, tiles_style="CartoDB positron")
regionalizer = H3Regionalizer(resolution=9)
regions_gdf = regionalizer.transform(area_gdf)
plot_regions(regions_gdf, tiles_style="CartoDB positron")
Out[5]:
Make this Notebook Trusted to load map: File -> Trust Notebook
In [6]:
Copied!
joiner = IntersectionJoiner()
joint_gdf = joiner.transform(regions_gdf, features_gdf)
joint_gdf
joiner = IntersectionJoiner()
joint_gdf = joiner.transform(regions_gdf, features_gdf)
joint_gdf
Out[6]:
region_id | feature_id |
---|---|
891e2047087ffff | way/520612441 |
891e204708fffff | way/520612441 |
891e2050a13ffff | way/727025008 |
891e2050a03ffff | way/727025008 |
891e2050a1bffff | way/727025008 |
... | ... |
891e2047547ffff | way/772238372 |
way/772238371 | |
way/772238373 | |
891e2040abbffff | way/310591107 |
891e2043203ffff | way/1033837570 |
3797 rows × 0 columns
Embedding¶
After preparing the data we can proceed with generating embeddings for the regions.
In [7]:
Copied!
import warnings
neighbourhood = H3Neighbourhood(regions_gdf)
embedder = Hex2VecEmbedder([15, 10])
with warnings.catch_warnings():
warnings.simplefilter("ignore")
embeddings = embedder.fit_transform(
regions_gdf,
features_gdf,
joint_gdf,
neighbourhood,
trainer_kwargs={"max_epochs": 5, "accelerator": "cpu"},
batch_size=100,
)
embeddings
import warnings
neighbourhood = H3Neighbourhood(regions_gdf)
embedder = Hex2VecEmbedder([15, 10])
with warnings.catch_warnings():
warnings.simplefilter("ignore")
embeddings = embedder.fit_transform(
regions_gdf,
features_gdf,
joint_gdf,
neighbourhood,
trainer_kwargs={"max_epochs": 5, "accelerator": "cpu"},
batch_size=100,
)
embeddings
100%|██████████| 3168/3168 [00:00<00:00, 17682.67it/s] GPU available: False, used: False TPU available: False, using: 0 TPU cores IPU available: False, using: 0 IPUs HPU available: False, using: 0 HPUs | Name | Type | Params --------------------------------------- 0 | encoder | Sequential | 280 --------------------------------------- 280 Trainable params 0 Non-trainable params 280 Total params 0.001 Total estimated model params size (MB)
`Trainer.fit` stopped: `max_epochs=5` reached.
Out[7]:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|---|
region_id | ||||||||||
891e2047087ffff | -0.315386 | -0.081035 | -0.296213 | -0.498415 | -0.012670 | 0.267480 | -0.401396 | 0.361879 | -0.110500 | 0.018470 |
891e2050a13ffff | -0.569938 | 0.208577 | -0.496939 | -0.810638 | -0.079023 | 0.246054 | -0.229530 | 0.369954 | -0.173344 | -0.238820 |
891e2040947ffff | -0.625594 | 0.941852 | 0.871613 | 0.023387 | -0.982461 | 0.105278 | 1.244328 | -0.402938 | 0.797777 | -1.042796 |
891e2040c7bffff | 0.359040 | -0.197065 | 0.003509 | 0.324392 | 0.206475 | -0.135264 | -0.225939 | -0.111279 | -0.187345 | 0.335457 |
891e2042617ffff | 0.359040 | -0.197065 | 0.003509 | 0.324392 | 0.206475 | -0.135264 | -0.225939 | -0.111279 | -0.187345 | 0.335457 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
891e2042b03ffff | 0.074926 | 0.229409 | 0.447267 | 0.620098 | -0.135165 | -0.056325 | 0.305491 | -0.386047 | 0.382916 | 0.102599 |
891e205534fffff | 0.359040 | -0.197065 | 0.003509 | 0.324392 | 0.206475 | -0.135264 | -0.225939 | -0.111279 | -0.187345 | 0.335457 |
891e20472a3ffff | -0.460802 | 0.354916 | 0.190510 | 0.051184 | -0.286301 | 0.226548 | 0.064835 | -0.048162 | 0.393264 | -0.032893 |
891e2041d4fffff | 0.359040 | -0.197065 | 0.003509 | 0.324392 | 0.206475 | -0.135264 | -0.225939 | -0.111279 | -0.187345 | 0.335457 |
891e2043483ffff | 0.359040 | -0.197065 | 0.003509 | 0.324392 | 0.206475 | -0.135264 | -0.225939 | -0.111279 | -0.187345 | 0.335457 |
3168 rows × 10 columns
Visualizing the embeddings' similarity¶
In [8]:
Copied!
from sklearn.cluster import KMeans
clusterizer = KMeans(n_clusters=5, random_state=SEED)
clusterizer.fit(embeddings)
embeddings["cluster"] = clusterizer.labels_
embeddings
from sklearn.cluster import KMeans
clusterizer = KMeans(n_clusters=5, random_state=SEED)
clusterizer.fit(embeddings)
embeddings["cluster"] = clusterizer.labels_
embeddings
/opt/hostedtoolcache/Python/3.10.13/x64/lib/python3.10/site-packages/sklearn/cluster/_kmeans.py:1412: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning super()._check_params_vs_input(X, default_n_init=10)
Out[8]:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | cluster | |
---|---|---|---|---|---|---|---|---|---|---|---|
region_id | |||||||||||
891e2047087ffff | -0.315386 | -0.081035 | -0.296213 | -0.498415 | -0.012670 | 0.267480 | -0.401396 | 0.361879 | -0.110500 | 0.018470 | 1 |
891e2050a13ffff | -0.569938 | 0.208577 | -0.496939 | -0.810638 | -0.079023 | 0.246054 | -0.229530 | 0.369954 | -0.173344 | -0.238820 | 1 |
891e2040947ffff | -0.625594 | 0.941852 | 0.871613 | 0.023387 | -0.982461 | 0.105278 | 1.244328 | -0.402938 | 0.797777 | -1.042796 | 3 |
891e2040c7bffff | 0.359040 | -0.197065 | 0.003509 | 0.324392 | 0.206475 | -0.135264 | -0.225939 | -0.111279 | -0.187345 | 0.335457 | 0 |
891e2042617ffff | 0.359040 | -0.197065 | 0.003509 | 0.324392 | 0.206475 | -0.135264 | -0.225939 | -0.111279 | -0.187345 | 0.335457 | 0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
891e2042b03ffff | 0.074926 | 0.229409 | 0.447267 | 0.620098 | -0.135165 | -0.056325 | 0.305491 | -0.386047 | 0.382916 | 0.102599 | 3 |
891e205534fffff | 0.359040 | -0.197065 | 0.003509 | 0.324392 | 0.206475 | -0.135264 | -0.225939 | -0.111279 | -0.187345 | 0.335457 | 0 |
891e20472a3ffff | -0.460802 | 0.354916 | 0.190510 | 0.051184 | -0.286301 | 0.226548 | 0.064835 | -0.048162 | 0.393264 | -0.032893 | 3 |
891e2041d4fffff | 0.359040 | -0.197065 | 0.003509 | 0.324392 | 0.206475 | -0.135264 | -0.225939 | -0.111279 | -0.187345 | 0.335457 | 0 |
891e2043483ffff | 0.359040 | -0.197065 | 0.003509 | 0.324392 | 0.206475 | -0.135264 | -0.225939 | -0.111279 | -0.187345 | 0.335457 | 0 |
3168 rows × 11 columns
In [9]:
Copied!
plot_numeric_data(regions_gdf, "cluster", embeddings)
plot_numeric_data(regions_gdf, "cluster", embeddings)
Out[9]:
Make this Notebook Trusted to load map: File -> Trust Notebook