Hex2vec embedder
In [1]:
Copied!
from pytorch_lightning import seed_everything
from srai.embedders import Hex2VecEmbedder
from srai.joiners import IntersectionJoiner
from srai.loaders import OSMOnlineLoader
from srai.neighbourhoods import H3Neighbourhood
from srai.plotting import plot_numeric_data, plot_regions
from srai.regionalizers import H3Regionalizer, geocode_to_region_gdf
from pytorch_lightning import seed_everything
from srai.embedders import Hex2VecEmbedder
from srai.joiners import IntersectionJoiner
from srai.loaders import OSMOnlineLoader
from srai.neighbourhoods import H3Neighbourhood
from srai.plotting import plot_numeric_data, plot_regions
from srai.regionalizers import H3Regionalizer, geocode_to_region_gdf
In [2]:
Copied!
SEED = 71
seed_everything(SEED)
SEED = 71
seed_everything(SEED)
Seed set to 71
Out[2]:
71
Load data from OSM¶
First use geocoding to get the area
In [3]:
Copied!
area_gdf = geocode_to_region_gdf("Wrocław, Poland")
plot_regions(area_gdf, tiles_style="CartoDB positron")
area_gdf = geocode_to_region_gdf("Wrocław, Poland")
plot_regions(area_gdf, tiles_style="CartoDB positron")
Out[3]:
Make this Notebook Trusted to load map: File -> Trust Notebook
Next, download the data for the selected region and the specified tags. We're using OSMOnlineLoader
here, as it's faster for low numbers of tags. In a real life scenario with more tags, you would likely want to use the OSMPbfLoader
.
In [4]:
Copied!
tags = {
"leisure": "park",
"landuse": "forest",
"amenity": ["bar", "restaurant", "cafe"],
"water": "river",
"sport": "soccer",
}
loader = OSMOnlineLoader()
features_gdf = loader.load(area_gdf, tags)
folium_map = plot_regions(area_gdf, colormap=["rgba(0,0,0,0)"], tiles_style="CartoDB positron")
features_gdf.explore(m=folium_map)
tags = {
"leisure": "park",
"landuse": "forest",
"amenity": ["bar", "restaurant", "cafe"],
"water": "river",
"sport": "soccer",
}
loader = OSMOnlineLoader()
features_gdf = loader.load(area_gdf, tags)
folium_map = plot_regions(area_gdf, colormap=["rgba(0,0,0,0)"], tiles_style="CartoDB positron")
features_gdf.explore(m=folium_map)
Out[4]:
Make this Notebook Trusted to load map: File -> Trust Notebook
Prepare the data for embedding¶
After downloading the data, we need to prepare it for embedding. Namely - we need to regionalize the selected area, and join the features with regions.
In [5]:
Copied!
regionalizer = H3Regionalizer(resolution=9)
regions_gdf = regionalizer.transform(area_gdf)
plot_regions(regions_gdf, tiles_style="CartoDB positron")
regionalizer = H3Regionalizer(resolution=9)
regions_gdf = regionalizer.transform(area_gdf)
plot_regions(regions_gdf, tiles_style="CartoDB positron")
Out[5]:
Make this Notebook Trusted to load map: File -> Trust Notebook
In [6]:
Copied!
joiner = IntersectionJoiner()
joint_gdf = joiner.transform(regions_gdf, features_gdf)
joint_gdf
joiner = IntersectionJoiner()
joint_gdf = joiner.transform(regions_gdf, features_gdf)
joint_gdf
Out[6]:
region_id | feature_id |
---|---|
891e2040897ffff | node/280727473 |
891e2040d4bffff | node/300461026 |
node/300461036 | |
891e2040d5bffff | node/300461042 |
891e2040887ffff | node/300461045 |
... | |
way/1422748565 | |
891e2040d4bffff | way/1422748565 |
891e20454c3ffff | way/1422964443 |
891e20454c7ffff | way/1423396175 |
891e204055bffff | way/1426281734 |
4184 rows × 0 columns
Embedding¶
After preparing the data we can proceed with generating embeddings for the regions.
In [7]:
Copied!
import warnings
neighbourhood = H3Neighbourhood(regions_gdf)
embedder = Hex2VecEmbedder([15, 10])
with warnings.catch_warnings():
warnings.simplefilter("ignore")
embeddings = embedder.fit_transform(
regions_gdf,
features_gdf,
joint_gdf,
neighbourhood,
trainer_kwargs={"max_epochs": 5, "accelerator": "cpu"},
batch_size=100,
)
embeddings
import warnings
neighbourhood = H3Neighbourhood(regions_gdf)
embedder = Hex2VecEmbedder([15, 10])
with warnings.catch_warnings():
warnings.simplefilter("ignore")
embeddings = embedder.fit_transform(
regions_gdf,
features_gdf,
joint_gdf,
neighbourhood,
trainer_kwargs={"max_epochs": 5, "accelerator": "cpu"},
batch_size=100,
)
embeddings
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
HPU available: False, using: 0 HPUs
| Name | Type | Params | Mode ----------------------------------------------- 0 | encoder | Sequential | 280 | train ----------------------------------------------- 280 Trainable params 0 Non-trainable params 280 Total params 0.001 Total estimated model params size (MB) 4 Modules in train mode 0 Modules in eval mode
`Trainer.fit` stopped: `max_epochs=5` reached.
Out[7]:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|---|
region_id | ||||||||||
891e20420a3ffff | -0.174341 | -0.056702 | -0.141757 | -0.667297 | -0.202505 | 0.206961 | -0.021806 | 0.321687 | -0.127026 | -0.436821 |
891e204464bffff | 0.343515 | -0.252565 | -0.024092 | 0.285924 | 0.227262 | -0.109314 | -0.294415 | -0.081705 | -0.220079 | 0.355786 |
891e20451d7ffff | -0.640497 | 0.170387 | -0.494039 | -1.028213 | -0.137231 | 0.290711 | -0.081518 | 0.542585 | -0.223446 | -0.550366 |
891e2043003ffff | 0.343515 | -0.252565 | -0.024092 | 0.285924 | 0.227262 | -0.109314 | -0.294415 | -0.081705 | -0.220079 | 0.355786 |
891e204e58bffff | 0.343515 | -0.252565 | -0.024092 | 0.285924 | 0.227262 | -0.109314 | -0.294415 | -0.081705 | -0.220079 | 0.355786 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
891e2042047ffff | -0.556559 | 0.221652 | -0.474314 | -0.786877 | -0.063241 | 0.234308 | -0.228298 | 0.460485 | -0.162664 | -0.378898 |
891e2042b5bffff | 0.190548 | -0.161601 | 0.279989 | -0.584597 | -0.442690 | 0.057572 | 0.527642 | 0.084223 | -0.035751 | -0.852826 |
891e2040c6fffff | -0.082226 | -0.234706 | -0.108623 | -0.060088 | 0.117618 | 0.030050 | -0.293866 | 0.166905 | -0.140017 | 0.083183 |
891e2042937ffff | 0.343515 | -0.252565 | -0.024092 | 0.285924 | 0.227262 | -0.109314 | -0.294415 | -0.081705 | -0.220079 | 0.355786 |
891e2040613ffff | 0.343515 | -0.252565 | -0.024092 | 0.285924 | 0.227262 | -0.109314 | -0.294415 | -0.081705 | -0.220079 | 0.355786 |
3168 rows × 10 columns
Visualizing the embeddings' similarity¶
In [8]:
Copied!
from sklearn.cluster import KMeans
clusterizer = KMeans(n_clusters=5, random_state=SEED)
clusterizer.fit(embeddings)
embeddings["cluster"] = clusterizer.labels_
embeddings
from sklearn.cluster import KMeans
clusterizer = KMeans(n_clusters=5, random_state=SEED)
clusterizer.fit(embeddings)
embeddings["cluster"] = clusterizer.labels_
embeddings
Out[8]:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | cluster | |
---|---|---|---|---|---|---|---|---|---|---|---|
region_id | |||||||||||
891e20420a3ffff | -0.174341 | -0.056702 | -0.141757 | -0.667297 | -0.202505 | 0.206961 | -0.021806 | 0.321687 | -0.127026 | -0.436821 | 1 |
891e204464bffff | 0.343515 | -0.252565 | -0.024092 | 0.285924 | 0.227262 | -0.109314 | -0.294415 | -0.081705 | -0.220079 | 0.355786 | 0 |
891e20451d7ffff | -0.640497 | 0.170387 | -0.494039 | -1.028213 | -0.137231 | 0.290711 | -0.081518 | 0.542585 | -0.223446 | -0.550366 | 4 |
891e2043003ffff | 0.343515 | -0.252565 | -0.024092 | 0.285924 | 0.227262 | -0.109314 | -0.294415 | -0.081705 | -0.220079 | 0.355786 | 0 |
891e204e58bffff | 0.343515 | -0.252565 | -0.024092 | 0.285924 | 0.227262 | -0.109314 | -0.294415 | -0.081705 | -0.220079 | 0.355786 | 0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
891e2042047ffff | -0.556559 | 0.221652 | -0.474314 | -0.786877 | -0.063241 | 0.234308 | -0.228298 | 0.460485 | -0.162664 | -0.378898 | 4 |
891e2042b5bffff | 0.190548 | -0.161601 | 0.279989 | -0.584597 | -0.442690 | 0.057572 | 0.527642 | 0.084223 | -0.035751 | -0.852826 | 3 |
891e2040c6fffff | -0.082226 | -0.234706 | -0.108623 | -0.060088 | 0.117618 | 0.030050 | -0.293866 | 0.166905 | -0.140017 | 0.083183 | 0 |
891e2042937ffff | 0.343515 | -0.252565 | -0.024092 | 0.285924 | 0.227262 | -0.109314 | -0.294415 | -0.081705 | -0.220079 | 0.355786 | 0 |
891e2040613ffff | 0.343515 | -0.252565 | -0.024092 | 0.285924 | 0.227262 | -0.109314 | -0.294415 | -0.081705 | -0.220079 | 0.355786 | 0 |
3168 rows × 11 columns
In [9]:
Copied!
plot_numeric_data(regions_gdf, "cluster", embeddings)
plot_numeric_data(regions_gdf, "cluster", embeddings)
Out[9]:
Make this Notebook Trusted to load map: File -> Trust Notebook