BaseEvaluator
srai.benchmark.BaseEvaluator ¶
BaseEvaluator(
task: Literal[
"trajectory_regression",
"regression",
"poi_prediction",
"mobility_prediction",
],
)
Bases: ABC
Abstract class for benchmark evaluators.
Source code in srai/benchmark/_base.py
evaluate ¶
abstractmethod
evaluate(
dataset: sds.PointDataset | sds.TrajectoryDataset,
predictions: np.ndarray,
log_metrics: bool = True,
hf_token: Optional[str] = None,
**kwargs: Any
) -> dict[str, float]
Evaluate predictions againts test set.
PARAMETER | DESCRIPTION |
---|---|
dataset
|
Dataset to evaluate on.
TYPE:
|
predictions
|
Predictions returned by your model.
TYPE:
|
log_metrics
|
If True, logs metrics to the console. Defaults to True.
TYPE:
|
hf_token
|
If needed, a User Access Token needed to authenticate to HF Defaults to None.
TYPE:
|
**kwargs
|
Additional keyword arguments depending on the task.
TYPE:
|
PARAMETER | DESCRIPTION |
---|---|
region_ids |
List of region IDs. Required for region-based evaluators.
TYPE:
|
point_of_interests |
Points of interest. Required for point-based evaluators.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
dict[str, float]
|
dict[str, float]: Dictionary with metrics values for the task. |
Note
Specific subclasses may require different sets of keyword arguments.