HexRegressionEvaluator
srai.benchmark.HexRegressionEvaluator ¶
Bases: BaseEvaluator
Evaluator for regression task.
Source code in srai/benchmark/hex_regression_evaluator.py
evaluate ¶
evaluate(
dataset: sds.PointDataset | sds.TrajectoryDataset,
predictions: np.ndarray,
log_metrics: bool = True,
hf_token: Optional[str] = None,
**kwargs: Any
) -> dict[str, float]
Evaluate regression predictions against test set.
This regression evaluator is designed for H3 grid predictions. Metrics are calculated for each h3 where at least one data point is present (empty regions are not taken into account).
PARAMETER | DESCRIPTION |
---|---|
dataset
|
Dataset to evaluate.
TYPE:
|
predictions
|
Predictions returned by your model. Should match regions_id.
TYPE:
|
log_metrics
|
If True, logs metrics to the console. Defaults to True.
TYPE:
|
hf_token
|
If needed, a User Access Token needed to authenticate to HF Defaults to None.
TYPE:
|
**kwargs
|
Additional keyword arguments.
TYPE:
|
PARAMETER | DESCRIPTION |
---|---|
region_ids |
List of region IDs. Required for region-based evaluators.
TYPE:
|
RAISES | DESCRIPTION |
---|---|
ValueError
|
If region id for H3 index not found in region_ids. |
RETURNS | DESCRIPTION |
---|---|
dict[str, float]
|
dict[str, float]: Dictionary with metrics values for the task. |