S2VecEmbedder
srai.embedders.S2VecEmbedder ¶
S2VecEmbedder(
target_features: Union[list[str], OsmTagsFilter, GroupedOsmTagsFilter],
count_subcategories: bool = True,
batch_size: Optional[int] = 64,
img_res: int = 8,
patch_res: int = 12,
num_heads: int = 8,
encoder_layers: int = 6,
decoder_layers: int = 2,
embedding_dim: int = 256,
decoder_dim: int = 128,
mask_ratio: float = 0.75,
dropout_prob: float = 0.2,
)
Bases: CountEmbedder
S2Vec Embedder.
PARAMETER | DESCRIPTION |
---|---|
target_features
|
The features
that are to be used in the embedding. Should be in "flat" format,
i.e. "
TYPE:
|
count_subcategories
|
Whether to count all subcategories individually or count features only on the highest level based on features column name. Defaults to True.
TYPE:
|
batch_size
|
Batch size. Defaults to 64.
TYPE:
|
img_res
|
Image resolution. Defaults to 8.
TYPE:
|
patch_res
|
Patch resolution. Defaults to 12.
TYPE:
|
num_heads
|
Number of heads in the transformer. Defaults to 8.
TYPE:
|
encoder_layers
|
Number of encoder layers in the transformer. Defaults to 6.
TYPE:
|
decoder_layers
|
Number of decoder layers in the transformer. Defaults to 2.
TYPE:
|
embedding_dim
|
Embedding dimension. Defaults to 256.
TYPE:
|
decoder_dim
|
Decoder dimension. Defaults to 128.
TYPE:
|
mask_ratio
|
Mask ratio for the transformer. Defaults to 0.75.
TYPE:
|
dropout_prob
|
The dropout probability. Defaults to 0.2.
TYPE:
|
Source code in srai/embedders/s2vec/embedder.py
fit ¶
fit(
regions_gdf: gpd.GeoDataFrame,
features_gdf: gpd.GeoDataFrame,
learning_rate: float = 0.001,
trainer_kwargs: Optional[dict[str, Any]] = None,
) -> None
Fit the model to the data.
PARAMETER | DESCRIPTION |
---|---|
regions_gdf
|
Region indexes and geometries.
TYPE:
|
features_gdf
|
Feature indexes, geometries and feature values.
TYPE:
|
learning_rate
|
Learning rate. Defaults to 0.001.
TYPE:
|
trainer_kwargs
|
Trainer kwargs. This is where the number of epochs can be set. Defaults to None.
TYPE:
|
Source code in srai/embedders/s2vec/embedder.py
fit_transform ¶
fit_transform(
regions_gdf: gpd.GeoDataFrame,
features_gdf: gpd.GeoDataFrame,
learning_rate: float = 0.001,
trainer_kwargs: Optional[dict[str, Any]] = None,
) -> pd.DataFrame
Fit the model to the data and create region embeddings.
PARAMETER | DESCRIPTION |
---|---|
regions_gdf
|
Region indexes and geometries.
TYPE:
|
features_gdf
|
Feature indexes, geometries and feature values.
TYPE:
|
learning_rate
|
Learning rate. Defaults to 0.001.
TYPE:
|
trainer_kwargs
|
Trainer kwargs. This is where the number of epochs can be set. Defaults to None.
TYPE:
|
Source code in srai/embedders/s2vec/embedder.py
load ¶
classmethod
Load the model from a directory.
PARAMETER | DESCRIPTION |
---|---|
path
|
Path to the directory.
TYPE:
|
model_module
|
Model class.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
S2VecEmbedder
|
S2VecEmbedder object.
TYPE:
|
Source code in srai/embedders/s2vec/embedder.py
save ¶
Save the S2VecEmbedder model to a directory.
PARAMETER | DESCRIPTION |
---|---|
path
|
Path to the directory.
TYPE:
|
Source code in srai/embedders/s2vec/embedder.py
transform ¶
Create region embeddings.
PARAMETER | DESCRIPTION |
---|---|
regions_gdf
|
Region indexes and geometries.
TYPE:
|
features_gdf
|
Feature indexes, geometries and feature values.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
DataFrame
|
pd.DataFrame: Region embeddings. |