Hex2vec embedder
In [1]:
Copied!
from pytorch_lightning import seed_everything
from srai.embedders import Hex2VecEmbedder
from srai.joiners import IntersectionJoiner
from srai.loaders import OSMOnlineLoader
from srai.neighbourhoods import H3Neighbourhood
from srai.plotting import plot_numeric_data, plot_regions
from srai.regionalizers import H3Regionalizer, geocode_to_region_gdf
from pytorch_lightning import seed_everything
from srai.embedders import Hex2VecEmbedder
from srai.joiners import IntersectionJoiner
from srai.loaders import OSMOnlineLoader
from srai.neighbourhoods import H3Neighbourhood
from srai.plotting import plot_numeric_data, plot_regions
from srai.regionalizers import H3Regionalizer, geocode_to_region_gdf
In [2]:
Copied!
SEED = 71
seed_everything(SEED)
SEED = 71
seed_everything(SEED)
Seed set to 71
Out[2]:
71
Load data from OSM¶
First use geocoding to get the area
In [3]:
Copied!
area_gdf = geocode_to_region_gdf("Wrocław, Poland")
plot_regions(area_gdf, tiles_style="CartoDB positron")
area_gdf = geocode_to_region_gdf("Wrocław, Poland")
plot_regions(area_gdf, tiles_style="CartoDB positron")
Out[3]:
Make this Notebook Trusted to load map: File -> Trust Notebook
Next, download the data for the selected region and the specified tags. We're using OSMOnlineLoader
here, as it's faster for low numbers of tags. In a real life scenario with more tags, you would likely want to use the OSMPbfLoader
.
In [4]:
Copied!
tags = {
"leisure": "park",
"landuse": "forest",
"amenity": ["bar", "restaurant", "cafe"],
"water": "river",
"sport": "soccer",
}
loader = OSMOnlineLoader()
features_gdf = loader.load(area_gdf, tags)
folium_map = plot_regions(area_gdf, colormap=["rgba(0,0,0,0)"], tiles_style="CartoDB positron")
features_gdf.explore(m=folium_map)
tags = {
"leisure": "park",
"landuse": "forest",
"amenity": ["bar", "restaurant", "cafe"],
"water": "river",
"sport": "soccer",
}
loader = OSMOnlineLoader()
features_gdf = loader.load(area_gdf, tags)
folium_map = plot_regions(area_gdf, colormap=["rgba(0,0,0,0)"], tiles_style="CartoDB positron")
features_gdf.explore(m=folium_map)
0%| | 0/7 [00:00<?, ?it/s]
Downloading leisure: park : 0%| | 0/7 [00:00<?, ?it/s]
Downloading leisure: park : 14%|█▍ | 1/7 [00:00<00:02, 2.78it/s]
Downloading landuse: forest : 14%|█▍ | 1/7 [00:00<00:02, 2.78it/s]
Downloading landuse: forest : 29%|██▊ | 2/7 [00:00<00:01, 3.18it/s]
Downloading amenity: bar : 29%|██▊ | 2/7 [00:00<00:01, 3.18it/s]
Downloading amenity: bar : 43%|████▎ | 3/7 [00:00<00:00, 4.13it/s]
Downloading amenity: restaurant: 43%|████▎ | 3/7 [00:00<00:00, 4.13it/s]
Downloading amenity: restaurant: 57%|█████▋ | 4/7 [00:00<00:00, 4.63it/s]
Downloading amenity: cafe : 57%|█████▋ | 4/7 [00:00<00:00, 4.63it/s]
Downloading amenity: cafe : 71%|███████▏ | 5/7 [00:01<00:00, 4.93it/s]
Downloading water: river : 71%|███████▏ | 5/7 [00:01<00:00, 4.93it/s]
Downloading water: river : 86%|████████▌ | 6/7 [00:01<00:00, 4.87it/s]
Downloading sport: soccer : 86%|████████▌ | 6/7 [00:01<00:00, 4.87it/s]
Downloading sport: soccer : 100%|██████████| 7/7 [00:01<00:00, 5.13it/s]
Downloading sport: soccer : 100%|██████████| 7/7 [00:01<00:00, 4.55it/s]
Out[4]:
Make this Notebook Trusted to load map: File -> Trust Notebook
Prepare the data for embedding¶
After downloading the data, we need to prepare it for embedding. Namely - we need to regionalize the selected area, and join the features with regions.
In [5]:
Copied!
regionalizer = H3Regionalizer(resolution=9)
regions_gdf = regionalizer.transform(area_gdf)
plot_regions(regions_gdf, tiles_style="CartoDB positron")
regionalizer = H3Regionalizer(resolution=9)
regions_gdf = regionalizer.transform(area_gdf)
plot_regions(regions_gdf, tiles_style="CartoDB positron")
Out[5]:
Make this Notebook Trusted to load map: File -> Trust Notebook
In [6]:
Copied!
joiner = IntersectionJoiner()
joint_gdf = joiner.transform(regions_gdf, features_gdf)
joint_gdf
joiner = IntersectionJoiner()
joint_gdf = joiner.transform(regions_gdf, features_gdf)
joint_gdf
Out[6]:
region_id | feature_id |
---|---|
891e2040083ffff | way/638731660 |
way/854890878 | |
way/357822164 | |
891e2040dcbffff | way/310783404 |
node/5451542294 | |
... | ... |
891e204e133ffff | way/561854384 |
way/561837447 | |
891e2051b4bffff | way/222450303 |
891e204202fffff | relation/14983408 |
891e204220fffff | way/264158238 |
4045 rows × 0 columns
Embedding¶
After preparing the data we can proceed with generating embeddings for the regions.
In [7]:
Copied!
import warnings
neighbourhood = H3Neighbourhood(regions_gdf)
embedder = Hex2VecEmbedder([15, 10])
with warnings.catch_warnings():
warnings.simplefilter("ignore")
embeddings = embedder.fit_transform(
regions_gdf,
features_gdf,
joint_gdf,
neighbourhood,
trainer_kwargs={"max_epochs": 5, "accelerator": "cpu"},
batch_size=100,
)
embeddings
import warnings
neighbourhood = H3Neighbourhood(regions_gdf)
embedder = Hex2VecEmbedder([15, 10])
with warnings.catch_warnings():
warnings.simplefilter("ignore")
embeddings = embedder.fit_transform(
regions_gdf,
features_gdf,
joint_gdf,
neighbourhood,
trainer_kwargs={"max_epochs": 5, "accelerator": "cpu"},
batch_size=100,
)
embeddings
0%| | 0/3168 [00:00<?, ?it/s]
100%|██████████| 3168/3168 [00:00<00:00, 32668.59it/s]
GPU available: False, used: False
TPU available: False, using: 0 TPU cores
HPU available: False, using: 0 HPUs
| Name | Type | Params | Mode ----------------------------------------------- 0 | encoder | Sequential | 280 | train ----------------------------------------------- 280 Trainable params 0 Non-trainable params 280 Total params 0.001 Total estimated model params size (MB) 4 Modules in train mode 0 Modules in eval mode
`Trainer.fit` stopped: `max_epochs=5` reached.
Out[7]:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|---|
region_id | ||||||||||
891e2040083ffff | 0.152695 | 0.251775 | 0.541692 | -0.187316 | -0.639290 | 0.079395 | 0.696558 | -0.162220 | 0.199217 | -0.864125 |
891e2040b23ffff | 0.340756 | -0.257625 | -0.027997 | 0.305648 | 0.210122 | -0.132536 | -0.278368 | -0.089754 | -0.236633 | 0.326764 |
891e2040dcbffff | 0.296672 | 0.557211 | 0.520201 | 0.672710 | -0.278723 | -0.342790 | 0.951536 | -0.507101 | 0.749205 | -0.198950 |
891e2055b17ffff | 0.340756 | -0.257625 | -0.027997 | 0.305648 | 0.210122 | -0.132536 | -0.278368 | -0.089754 | -0.236633 | 0.326764 |
891e204219bffff | -0.290594 | -0.075575 | -0.319353 | -0.476729 | -0.005199 | 0.241066 | -0.384562 | 0.375875 | -0.086437 | 0.004702 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
891e20451abffff | 0.340756 | -0.257625 | -0.027997 | 0.305648 | 0.210122 | -0.132536 | -0.278368 | -0.089754 | -0.236633 | 0.326764 |
891e2051b4bffff | -0.290594 | -0.075575 | -0.319353 | -0.476729 | -0.005199 | 0.241066 | -0.384562 | 0.375875 | -0.086437 | 0.004702 |
891e204202fffff | -0.290594 | -0.075575 | -0.319353 | -0.476729 | -0.005199 | 0.241066 | -0.384562 | 0.375875 | -0.086437 | 0.004702 |
891e204e49bffff | 0.340756 | -0.257625 | -0.027997 | 0.305648 | 0.210122 | -0.132536 | -0.278368 | -0.089754 | -0.236633 | 0.326764 |
891e204220fffff | -0.290594 | -0.075575 | -0.319353 | -0.476729 | -0.005199 | 0.241066 | -0.384562 | 0.375875 | -0.086437 | 0.004702 |
3168 rows × 10 columns
Visualizing the embeddings' similarity¶
In [8]:
Copied!
from sklearn.cluster import KMeans
clusterizer = KMeans(n_clusters=5, random_state=SEED)
clusterizer.fit(embeddings)
embeddings["cluster"] = clusterizer.labels_
embeddings
from sklearn.cluster import KMeans
clusterizer = KMeans(n_clusters=5, random_state=SEED)
clusterizer.fit(embeddings)
embeddings["cluster"] = clusterizer.labels_
embeddings
Out[8]:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | cluster | |
---|---|---|---|---|---|---|---|---|---|---|---|
region_id | |||||||||||
891e2040083ffff | 0.152695 | 0.251775 | 0.541692 | -0.187316 | -0.639290 | 0.079395 | 0.696558 | -0.162220 | 0.199217 | -0.864125 | 4 |
891e2040b23ffff | 0.340756 | -0.257625 | -0.027997 | 0.305648 | 0.210122 | -0.132536 | -0.278368 | -0.089754 | -0.236633 | 0.326764 | 0 |
891e2040dcbffff | 0.296672 | 0.557211 | 0.520201 | 0.672710 | -0.278723 | -0.342790 | 0.951536 | -0.507101 | 0.749205 | -0.198950 | 2 |
891e2055b17ffff | 0.340756 | -0.257625 | -0.027997 | 0.305648 | 0.210122 | -0.132536 | -0.278368 | -0.089754 | -0.236633 | 0.326764 | 0 |
891e204219bffff | -0.290594 | -0.075575 | -0.319353 | -0.476729 | -0.005199 | 0.241066 | -0.384562 | 0.375875 | -0.086437 | 0.004702 | 1 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
891e20451abffff | 0.340756 | -0.257625 | -0.027997 | 0.305648 | 0.210122 | -0.132536 | -0.278368 | -0.089754 | -0.236633 | 0.326764 | 0 |
891e2051b4bffff | -0.290594 | -0.075575 | -0.319353 | -0.476729 | -0.005199 | 0.241066 | -0.384562 | 0.375875 | -0.086437 | 0.004702 | 1 |
891e204202fffff | -0.290594 | -0.075575 | -0.319353 | -0.476729 | -0.005199 | 0.241066 | -0.384562 | 0.375875 | -0.086437 | 0.004702 | 1 |
891e204e49bffff | 0.340756 | -0.257625 | -0.027997 | 0.305648 | 0.210122 | -0.132536 | -0.278368 | -0.089754 | -0.236633 | 0.326764 | 0 |
891e204220fffff | -0.290594 | -0.075575 | -0.319353 | -0.476729 | -0.005199 | 0.241066 | -0.384562 | 0.375875 | -0.086437 | 0.004702 | 1 |
3168 rows × 11 columns
In [9]:
Copied!
plot_numeric_data(regions_gdf, "cluster", embeddings)
plot_numeric_data(regions_gdf, "cluster", embeddings)
Out[9]:
Make this Notebook Trusted to load map: File -> Trust Notebook