OSM PBF Loader¶
OSMPbfLoader
can really quickly parse full OSM extract in the form of *.osm.pbf
file.
It can download and parse a lot of features much faster than the OSMOnlineLoader
, but it's much more useful when a lot of different features are required at once (like when using predefined filters).
When only a single or few features are needed, OSMOnlineLoader
might be a better choice, since OSMPbfLoader
will use a full extract of all features in a given region and will have to iterate over all of them.
import geopandas as gpd
from shapely.geometry import Point, box
from srai.constants import REGIONS_INDEX, WGS84_CRS
from srai.geometry import buffer_geometry
from srai.loaders.osm_loaders import OSMPbfLoader
from srai.loaders.osm_loaders.filters import GEOFABRIK_LAYERS, HEX2VEC_FILTER
from srai.loaders.osm_loaders.filters.popular import get_popular_tags
from srai.regionalizers import geocode_to_region_gdf
Using OSMPbfLoader to download data for a specific area¶
Download all features from HEX2VEC_FILTER
in Warsaw, Poland¶
loader = OSMPbfLoader()
warsaw_gdf = geocode_to_region_gdf("Warsaw, Poland")
warsaw_features_gdf = loader.load(warsaw_gdf, HEX2VEC_FILTER)
warsaw_features_gdf
Finished operation in 0:00:55
geometry | aeroway | amenity | building | healthcare | historic | landuse | leisure | military | natural | office | shop | sport | tourism | water | waterway | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
feature_id | ||||||||||||||||
node/678562430 | POINT (21.01411 52.19378) | None | post_box | None | None | None | None | None | None | None | None | None | None | None | None | None |
node/678618340 | POINT (21.015 52.19263) | None | post_box | None | None | None | None | None | None | None | None | None | None | None | None | None |
node/678644474 | POINT (21.01352 52.20407) | None | fast_food | None | None | None | None | None | None | None | None | None | None | None | None | None |
node/678937846 | POINT (21.09087 52.2456) | None | None | None | None | None | None | None | None | None | None | alcohol | None | None | None | None |
node/678942376 | POINT (20.96207 52.24359) | None | pharmacy | None | None | None | None | None | None | None | None | None | None | None | None | None |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
way/1230936611 | POLYGON ((21.03628 52.24903, 21.03631 52.24905... | None | None | None | None | None | residential | None | None | None | None | None | None | None | None | None |
way/1231125069 | LINESTRING (21.1265 52.24148, 21.1267 52.24164... | None | None | None | None | None | None | None | None | None | None | None | None | None | None | drain |
way/1231125070 | LINESTRING (21.13127 52.23921, 21.1265 52.24148) | None | None | None | None | None | None | None | None | None | None | None | None | None | None | drain |
way/1231133578 | POLYGON ((21.13344 52.23831, 21.13337 52.23826... | None | None | roof | None | None | None | None | None | None | None | None | None | None | None | None |
way/1231174807 | POLYGON ((21.13335 52.23867, 21.13333 52.23865... | None | None | service | None | None | None | None | None | None | None | None | None | None | None | None |
335809 rows × 16 columns
Plot features¶
Inspired by prettymaps
clipped_features_gdf = warsaw_features_gdf.clip(warsaw_gdf.geometry.union_all())
ax = warsaw_gdf.plot(color="lavender", figsize=(16, 16))
# plot water
clipped_features_gdf.dropna(subset=["water", "waterway"], how="all").plot(
ax=ax, color="deepskyblue"
)
# plot greenery
clipped_features_gdf[
clipped_features_gdf["landuse"].isin(
["grass", "orchard", "flowerbed", "forest", "greenfield", "meadow"]
)
].plot(ax=ax, color="mediumseagreen")
# plot buildings
clipped_features_gdf.dropna(subset=["building"], how="all").plot(
ax=ax, color="dimgray", markersize=0.1
)
xmin, ymin, xmax, ymax = warsaw_gdf.total_bounds
ax.set_xlim(xmin, xmax)
ax.set_ylim(ymin, ymax)
ax.set_axis_off()
Download all features from popular tags based on OSMTagInfo in Vienna, Austria¶
popular_tags = get_popular_tags(in_wiki_only=True)
num_keys = len(popular_tags)
f"Unique keys: {num_keys}."
'Unique keys: 367.'
{k: popular_tags[k] for k in list(popular_tags)[:10]}
{'4wd_only': ['yes'], 'LandPro08:reviewed': ['no'], 'abandoned': ['yes'], 'abandoned:railway': ['rail'], 'abutters': ['residential'], 'access': ['agricultural', 'customers', 'delivery', 'designated', 'destination', 'forestry', 'no', 'permissive', 'permit', 'private', 'unknown', 'yes'], 'addr:TW:dataset': ['137998'], 'addr:city': ['London'], 'addr:country': ['CZ', 'DE', 'RU', 'TW', 'US'], 'addr:state': ['AZ', 'CA', 'CO', 'CT', 'FL', 'IN', 'KY', 'MD', 'ME', 'NC', 'NJ', 'NY', 'PA', 'TX']}
vienna_center_circle = buffer_geometry(Point(16.37009, 48.20931), meters=1000)
vienna_center_circle_gdf = gpd.GeoDataFrame(
geometry=[vienna_center_circle],
crs=WGS84_CRS,
index=gpd.pd.Index(data=["Vienna"], name=REGIONS_INDEX),
)
loader = OSMPbfLoader()
vienna_features_gdf = loader.load(vienna_center_circle_gdf, popular_tags)
vienna_features_gdf
/opt/hostedtoolcache/Python/3.10.17/x64/lib/python3.10/site-packages/quackosm/pb f_file_reader.py:2614: UserWarning: Select clause contains more than 100 columns (found 367 columns). Query might fail with insufficient memory resources. Consider applying more restrictive OsmTagsFilter for parsing. warnings.warn(
Finished operation in 0:00:31
geometry | access | admin_level | advertising | amenity | area:highway | artwork_type | atm | barrier | bench | ... | tunnel | type | usage | vehicle | vending | waste | water | water_source | waterway | wheelchair | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
feature_id | |||||||||||||||||||||
node/33182886 | POINT (16.36631 48.20782) | None | None | None | None | None | None | None | None | None | ... | None | None | None | None | None | None | None | None | None | None |
node/33182965 | POINT (16.37033 48.20359) | None | None | None | None | None | None | None | None | None | ... | None | None | None | None | None | None | None | None | None | None |
node/33344361 | POINT (16.36484 48.2159) | None | None | None | None | None | None | None | None | None | ... | None | None | None | None | None | None | None | None | None | None |
node/33344362 | POINT (16.36413 48.21558) | None | None | None | None | None | None | None | None | None | ... | None | None | None | None | None | None | None | None | None | None |
node/34591548 | POINT (16.36967 48.20235) | None | None | None | None | None | None | None | None | None | ... | None | None | None | None | None | None | None | None | None | None |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
relation/2341344 | POLYGON ((16.37569 48.20926, 16.37545 48.20905... | None | None | None | None | None | None | None | None | None | ... | None | multipolygon | None | None | None | None | None | None | None | None |
relation/2468785 | POLYGON ((16.37351 48.20694, 16.37354 48.20692... | None | None | None | None | None | None | None | None | None | ... | None | multipolygon | None | None | None | None | None | None | None | None |
relation/2449591 | POLYGON ((16.37198 48.21329, 16.37198 48.21328... | None | None | None | None | None | None | None | None | None | ... | None | multipolygon | None | None | None | None | None | None | None | None |
relation/2253271 | POLYGON ((16.37417 48.20741, 16.37416 48.2074,... | None | None | None | None | None | None | None | None | None | ... | None | multipolygon | None | None | None | None | None | None | None | None |
relation/2473747 | POLYGON ((16.36755 48.2116, 16.36757 48.21158,... | None | None | None | None | None | None | None | None | None | ... | None | multipolygon | None | None | None | None | None | None | None | None |
22844 rows × 190 columns
Plot features¶
Uses default
preset colours from prettymaps
clipped_vienna_features_gdf = vienna_features_gdf.clip(vienna_center_circle)
ax = vienna_center_circle_gdf.plot(color="#F2F4CB", figsize=(16, 16))
# plot water
clipped_vienna_features_gdf.dropna(subset=["water", "waterway"], how="all").plot(
ax=ax, color="#a8e1e6"
)
# plot streets
clipped_vienna_features_gdf.dropna(subset=["highway"], how="all").plot(
ax=ax, color="#475657", markersize=0.1
)
# plot buildings
clipped_vienna_features_gdf.dropna(subset=["building"], how="all").plot(ax=ax, color="#FF5E5B")
# plot parkings
clipped_vienna_features_gdf[
(clipped_vienna_features_gdf["amenity"] == "parking")
| (clipped_vienna_features_gdf["highway"] == "pedestrian")
].plot(ax=ax, color="#2F3737", markersize=0.1)
# plot greenery
clipped_vienna_features_gdf[
clipped_vienna_features_gdf["landuse"].isin(
["grass", "orchard", "flowerbed", "forest", "greenfield", "meadow"]
)
].plot(ax=ax, color="#8BB174")
xmin, ymin, xmax, ymax = vienna_center_circle_gdf.total_bounds
ax.set_xlim(xmin, xmax)
ax.set_ylim(ymin, ymax)
ax.set_axis_off()
Download all grouped features based on Geofabrik layers in New York, USA¶
manhattan_bbox = box(-73.994551, 40.762396, -73.936872, 40.804239)
manhattan_bbox_gdf = gpd.GeoDataFrame(
geometry=[manhattan_bbox],
crs=WGS84_CRS,
index=gpd.pd.Index(data=["New York"], name=REGIONS_INDEX),
)
loader = OSMPbfLoader()
new_york_features_gdf = loader.load(manhattan_bbox_gdf, GEOFABRIK_LAYERS)
new_york_features_gdf
/opt/hostedtoolcache/Python/3.10.17/x64/lib/python3.10/site-packages/quackosm/osm_extracts/__init__.py:602: GeometryNotCoveredWarning: Skipping extract because of low IoU value (bbbike_newyork, 0.000187). warnings.warn(
Finished operation in 0:00:36
geometry | accommodation | buildings | catering | education | fuel_parking | health | highway_links | landuse | leisure | ... | public | railways | shopping | tourism | traffic | transport | very_small_roads | water | water_traffic | waterways | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
feature_id | |||||||||||||||||||||
node/1906721425 | POINT (-73.98569 40.76828) | None | None | amenity=fast_food | None | None | None | None | None | None | ... | None | None | None | None | None | None | None | None | None | None |
node/1912138232 | POINT (-73.9398 40.80423) | None | None | None | None | None | None | None | None | None | ... | None | None | None | None | None | public_transport=stop_position | None | None | None | None |
node/1913191317 | POINT (-73.96733 40.79874) | None | None | amenity=restaurant | None | None | None | None | None | None | ... | None | None | None | None | None | None | None | None | None | None |
node/2113159209 | POINT (-73.97766 40.78438) | None | None | None | None | None | None | None | None | None | ... | None | None | shop=laundry | None | None | None | None | None | None | None |
node/2113159210 | POINT (-73.97725 40.78427) | None | None | amenity=restaurant | None | None | None | None | None | None | ... | None | None | None | None | None | None | None | None | None | None |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
way/1274003664 | LINESTRING (-73.95628 40.76288, -73.95627 40.7... | None | None | None | None | None | None | None | None | None | ... | None | None | None | None | None | None | highway=service | None | None | None |
way/1274003665 | LINESTRING (-73.95699 40.76242, -73.95686 40.7... | None | None | None | None | None | None | None | None | None | ... | None | None | None | None | None | None | highway=service | None | None | None |
way/1274003666 | LINESTRING (-73.95644 40.76297, -73.95646 40.7... | None | None | None | None | None | None | None | None | None | ... | None | None | None | None | None | None | None | None | None | None |
way/1274003667 | LINESTRING (-73.95684 40.7624, -73.95686 40.76... | None | None | None | None | None | None | None | None | None | ... | None | None | None | None | None | None | None | None | None | None |
way/1274022777 | POLYGON ((-73.96313 40.8036, -73.96311 40.8036... | None | None | None | None | None | None | None | None | None | ... | None | None | None | None | None | None | None | None | None | None |
50276 rows × 27 columns
Plot features¶
Inspired by https://snazzymaps.com/style/14889/flat-pale
ax = manhattan_bbox_gdf.plot(color="#e7e7df", figsize=(16, 16))
# plot greenery
new_york_features_gdf[new_york_features_gdf["leisure"] == "leisure=park"].plot(
ax=ax, color="#bae5ce"
)
# plot water
new_york_features_gdf.dropna(subset=["water", "waterways"], how="all").plot(ax=ax, color="#c7eced")
# plot streets
new_york_features_gdf.dropna(subset=["paths_unsuitable_for_cars"], how="all").plot(
ax=ax, color="#e7e7df", linewidth=1
)
new_york_features_gdf.dropna(
subset=["very_small_roads", "highway_links", "minor_roads"], how="all"
).plot(ax=ax, color="#fff", linewidth=2)
new_york_features_gdf.dropna(subset=["major_roads"], how="all").plot(
ax=ax, color="#fac9a9", linewidth=3
)
# plot buildings
new_york_features_gdf.dropna(subset=["buildings"], how="all").plot(ax=ax, color="#cecebd")
xmin, ymin, xmax, ymax = manhattan_bbox_gdf.total_bounds
ax.set_xlim(xmin, xmax)
ax.set_ylim(ymin, ymax)
ax.set_axis_off()
Using OSMPbfLoader to download data for a specific area and transforming it to GeoParquet file¶
Download all grouped features based on Geofabrik layers in Reykjavík, Iceland¶
loader = OSMPbfLoader()
reykjavik_gdf = geocode_to_region_gdf("Reykjavík, IS")
reykjavik_features_gpq = loader.load_to_geoparquet(reykjavik_gdf, GEOFABRIK_LAYERS)
reykjavik_features_gpq
Finished operation in 0:00:22
PosixPath('files/4e8a6f659f407cf02e3da5661575f63ce8a59a7d27bbf3e8751b97e290553593_098931824b94bfe02e01bc4987422a39ec47bd3f6924e5325ddae0846badafba_exploded.parquet')
Read those features using DuckDB¶
import duckdb
connection = duckdb.connect()
connection.load_extension("parquet")
connection.load_extension("spatial")
features_relation = connection.read_parquet(str(reykjavik_features_gpq))
features_relation
┌─────────────────┬───────────────┬─────────────┬───────────┬───────────────────┬───────────┬──────────────┬─────────┬───────────────┬─────────┬───────────────────┬─────────────┬─────────────┬─────────┬─────────┬─────────┬───────────────────────────┬─────────┬─────────┬──────────┬──────────┬─────────┬─────────────────────────┬────────────────────────────────┬──────────────────┬─────────┬───────────────┬───────────┬────────────────────────────────┐ │ feature_id │ accommodation │ air_traffic │ buildings │ catering │ education │ fuel_parking │ health │ highway_links │ landuse │ leisure │ major_roads │ minor_roads │ miscpoi │ money │ natural │ paths_unsuitable_for_cars │ pofw │ public │ railways │ shopping │ tourism │ traffic │ transport │ very_small_roads │ water │ water_traffic │ waterways │ geometry │ │ varchar │ varchar │ varchar │ varchar │ varchar │ varchar │ varchar │ varchar │ varchar │ varchar │ varchar │ varchar │ varchar │ varchar │ varchar │ varchar │ varchar │ varchar │ varchar │ varchar │ varchar │ varchar │ varchar │ varchar │ varchar │ varchar │ varchar │ varchar │ geometry │ ├─────────────────┼───────────────┼─────────────┼───────────┼───────────────────┼───────────┼──────────────┼─────────┼───────────────┼─────────┼───────────────────┼─────────────┼─────────────┼─────────┼─────────┼─────────┼───────────────────────────┼─────────┼─────────┼──────────┼──────────┼─────────┼─────────────────────────┼────────────────────────────────┼──────────────────┼─────────┼───────────────┼───────────┼────────────────────────────────┤ │ node/647029639 │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ highway=traffic_signals │ NULL │ NULL │ NULL │ NULL │ NULL │ POINT (-21.9471366 64.1421593) │ │ node/649707544 │ NULL │ NULL │ NULL │ amenity=fast_food │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ POINT (-21.8255422 64.1235888) │ │ node/649762012 │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ public_transport=stop_position │ NULL │ NULL │ NULL │ NULL │ POINT (-21.8226559 64.1233367) │ │ node/658052889 │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ highway=crossing │ NULL │ NULL │ NULL │ NULL │ NULL │ POINT (-21.7448043 64.1337358) │ │ node/659603820 │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ highway=crossing │ NULL │ NULL │ NULL │ NULL │ NULL │ POINT (-21.7670966 64.1243203) │ │ node/659603821 │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ highway=crossing │ NULL │ NULL │ NULL │ NULL │ NULL │ POINT (-21.7653526 64.1239808) │ │ node/659603822 │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ highway=crossing │ NULL │ NULL │ NULL │ NULL │ NULL │ POINT (-21.7627296 64.1227517) │ │ node/659603830 │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ highway=crossing │ NULL │ NULL │ NULL │ NULL │ NULL │ POINT (-21.7421181 64.1258596) │ │ node/661036955 │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ highway=traffic_signals │ NULL │ NULL │ NULL │ NULL │ NULL │ POINT (-21.8470747 64.1200648) │ │ node/661194738 │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ highway=crossing │ NULL │ NULL │ NULL │ NULL │ NULL │ POINT (-21.8984194 64.1258369) │ │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ · │ │ node/1201239043 │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ highway=crossing │ NULL │ NULL │ NULL │ NULL │ NULL │ POINT (-21.8373331 64.112029) │ │ node/1201239073 │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ highway=crossing │ NULL │ NULL │ NULL │ NULL │ NULL │ POINT (-21.8371813 64.1109962) │ │ node/1201239084 │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ highway=crossing │ NULL │ NULL │ NULL │ NULL │ NULL │ POINT (-21.8258026 64.1083446) │ │ node/1201239089 │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ highway=crossing │ NULL │ NULL │ NULL │ NULL │ NULL │ POINT (-21.8398695 64.1157335) │ │ node/1201978379 │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ amenity=nightclub │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ POINT (-21.9306686 64.1466042) │ │ node/1202433826 │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ highway=crossing │ NULL │ NULL │ NULL │ NULL │ NULL │ POINT (-21.8551287 64.1011354) │ │ node/1202433829 │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ highway=crossing │ NULL │ NULL │ NULL │ NULL │ NULL │ POINT (-21.8459149 64.0949897) │ │ node/1202433830 │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ highway=crossing │ NULL │ NULL │ NULL │ NULL │ NULL │ POINT (-21.8425785 64.105519) │ │ node/1202433837 │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ highway=crossing │ NULL │ NULL │ NULL │ NULL │ NULL │ POINT (-21.828099 64.0982267) │ │ node/1202433842 │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ NULL │ highway=crossing │ NULL │ NULL │ NULL │ NULL │ NULL │ POINT (-21.8281616 64.0959168) │ ├─────────────────┴───────────────┴─────────────┴───────────┴───────────────────┴───────────┴──────────────┴─────────┴───────────────┴─────────┴───────────────────┴─────────────┴─────────────┴─────────┴─────────┴─────────┴───────────────────────────┴─────────┴─────────┴──────────┴──────────┴─────────┴─────────────────────────┴────────────────────────────────┴──────────────────┴─────────┴───────────────┴───────────┴────────────────────────────────┤ │ ? rows (>9999 rows, 20 shown) 29 columns │ └─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┘
Count all buildings¶
features_relation.filter("buildings IS NOT NULL").count("feature_id")
┌───────────────────┐ │ count(feature_id) │ │ int64 │ ├───────────────────┤ │ 25363 │ └───────────────────┘
You can see more examples of how to use PbfFileReader
from the QuackOSM
library in the docs: https://kraina-ai.github.io/quackosm/latest/examples/pbf_file_reader/